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Abstract

In these notes we review the most important theoretical appr oaches to various quantum
transport regimes at the nanoscale: the Landauer-Battike r formalism for non-interacting
coherent transport, the generalized master equation method suitable for interacting sys-
tems weakly-coupled to particle reservoirs and the non-equilibrium Green's function formal-
ism (NEGF). Each method is shown to emerge, under certain conditions/approximations,
from the general Liouville-von Neumann equation of the open quantum system and the
so called partitioning approach. The vibron-assisted tran sport in nanolectromechanical
systems and the current-induced magnetic switching in arti cial nanomagnets are then in-
troduced via the master equation method. The Coulomb-block ade e ect is discussed in the
framework of the NEGF formalism. This tutorial is addressed to PhD and master students
at CIFRA (Centre International de Formation et de Recherche Avanees en Physique) or
to research assistants interested in the eld of quantum tra nsport.

1 Introduction

1.1 From Ohm's law to quantum transport

Electrical and thermal transport phenomena have been obsengand investigated for almost
two centuries. The Ohm's law (1827), the Seebeck (1822) and Pelti€1834) e ects were known
before the discovery of Bloch-band spectral structure or the dvelopement ofquantum statistical
mechanics. In fact, a microscopic origin of electrical current was pt forward within the Drude
model [1,2] a hundred years ago.

Later on, the semiclassical Boltzmann equation and the ensuing drifdi usion equations
provided a sound description of charge transfer in bulk semiconduor devices like pn-junctions
or Schottky diodes [3]. Here the quantum nature of charge carries is taken into account by
using the Fermi-Dirac statistics. The resistance of a sample and its iverse - the conductance
- are viewed as consequences of variosgattering processes. Indeed, electrons do not travel
freely through a conducting sample, they meet with xed impurities and interact with lattice
vibrations (phonons).

The validity range of these semiclassical theoretical methods wasesiously challenged by
some experiments in the early '90's. It was found that when the sizead/or dimensionality of the
systems are reduced the transport or the response coe cientslo not follow an Ohmic behavior.
In fact, the huge amount of experimental work on open gantum sgtem at low temperatures
provided more and more quantum devices whose transport propées are described by more
complicated equations which very little with the empirical relation | = V=R In order to
understand this feature the quantum nature of charge carriershould be fully taken into account
down to the level of their wavefunctions.

Fortunately, even the most striking quantum transport phenomena observed in the last two
decades can be rather well understood by modern theoretical nleods which essentially rely
on non-equilibrium statistical mechanics. The aim of this short tutorial is to present some of
these methods in a rather elementary way, accessible to Master dPhD students. A stepwise



introduction to quantum transport formalism will be provided. Some simple applications will

be presented when possible. However, the reader interested in m@oadvanced implementations
of quantum transport theories must rely on the existing monogrags (see [4{8] to cite only a
few) and more specialized review papers. Basic knowledge of 3rd yeguantum and statistical

mechanics is assumed.

1.2 Low-dimensional systems and coherent transport

The rather intuitive idea that the resistance of a piece of conductirg sample or material is a con-
sequence of scattering processes lead people to introduce varsolengths to describe transport
regimes in nanostructures.

Elastic scattering length | - the distance and electron travels between elastic scattering
events; this quantity is also known as the mean free path.

Inelastic scattering length li, - the distance an electron travels before its energy changes by
ks T (due to phonon-scattering processes); note that this length iselated to energy relaxation
proceses.

Phase coherence lengtlt - the distance an electron travels before the phase of its wave-
function changes by 2 ; this parameter brings in the quantum nature of charge carriers ad the
so called decoherence process.

For a macroscopic conductor whose length in the direction of electmic ow is L one has

|e| <||n <|‘ L. (1.1)

At low temperature the three lenghts de ned above are typically of the order of few m or less.
Now, asL decreases to few hundreds of nanometers one has

L<lin<lIl; (1.2)

and the system becomesnesoscopic Clearly, electrons travelling inside such a conductor ex-
perience only elastic scattering and conserve the phase of the wafunction. In other words,

the transport is said to be coherent If in addition one also hasL lel the transport is called

ballistic. Examples of mesoscopic systems are: metallic rings, the two-dimsional electronic
gas (2DEG), quantum dots, carbon nanotubes or graphene shee

It is very important to have in mind that ALL these lenghts become very small as the tem-
perature increases and the quantum features of transport areompletely washed out. For this
reason, the experiments and the applications based on quantum de&es must be performed at
very low temperatures (of order of few K or even tens of mK in the ase of nanoelectromechan-
ical systems). A fortunate exception are carbon nanotubes whit display quantum transport
properties even at room temperature.

The typical transport setup at nanoscale is the same as in the clagsal regime and goes as
follows: a piece of conductor is coupled to at least two electron reseoirs (source and drain
probes). Then a biasV is applies across the conductor, and one measures the cureintowing
from one reservoir to another. The ratio g = I=V is by de nition the conductance of the
system. As already mentioned, for large sampleg has an Ohmic behaviour, meaning that it
can be expressed ag = W=L, being the conductivity of the sample, W its width and L
its length. Contrary to what we expected from this formula, the experiments [9] showed that
as L decreases the conductance doa®t increases inde nitely but rather reaches a limiting
value g.. More precisely, in order to break the Ohmic behaviourL should be smaller than the
mean free path of electrons inside the sample. The mesoscopic sgsts obey that condition and
are expected to be the building blocks of the future microelectronis (see [10] for an extensive
review on the experimental results and [11] for a more theoreticabverview).

It was clear from the 80's that in order to describe the transport processes at nanoscale one
has to go beyond the Boltzmann description that recovers the Drae-Lorentz formula. Some



of the challenging problems which stimulated new quantum theoretich methods were: the
appropriate treatment of electron-electron interaction (in particular, going beyond the single-
particle mean- eld approximation), the description of the non-linear response regime or the
calculation of time-dependent (transient) transport properties.

The tutorial presents some of these method and is organized in sexal sections. In Sec-
tion 2 we present the rst non-trivial e ect observed at nanoscale, namely the quantization of
the conductance in the quantum point contacts. Section 3 preses the so called partitioning
and partition-free setups for quantum transport which, together with the de nition of the cur-
rent operator set the stage for various theoretical methods. &ction 4 describes the scattering
approach to non-interacting quantum transport and contains the derivation of the celebrated
Landauer-Budttiker formula. The quantum master equation meth od is presented in Section 5.
Section 6 contains the formulation of vibron-assisted transport innanoelectromechanical sys-
tems. In Section 7 the current-induced magnetic switching in arti cial nanomagnets. Finally, a
quick account on the non-equilibrium Green's function formalism is give in Section 8, followed
by two simple applications in Sections 9 and 10 . Appendix 11 contains soe technical details.

2 Conductance guantization

In this section we provide the simplest transport calculation which cgtures the step-like struc-

ture of the conductance of a quantum point contact (QPC). Suchsystems are obtained by

adding a split-gate structure on top of a AlGaAs heterostructure hosting a two-dimensional

electron gas (2DEG). In the presence of the metallic gates two larg regions of the 2DEG be-

come separated by a narrow quasi one-dimensional structure €e Fig.1). Now, assuming that

the left/right regions of the 2DEG are characterized by equilibrium chemical potentials | and
r One can measure the current passing through the narrow 1D cotriction.
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Figure 1: Left panel: Transport through a one-dimensional long stucture placed between two
particle reservoirs at chemical potentials. The propagation direcion of electronic plane waves is
indicated by arrows. b) Right panel: The dispersion relation for seveal energy levelsg,, of the

1D channel (the spin degeneracy is present). Electrons tunnekdm the left reservoir into the

probe and from the probe into the right reservoir. The applied bias isthe di erence between

the two chemical potentials.

We shall start by calculating the wavefunctions of the central sanple (the QPC). Given the

geometry of the system one expects that electrons travel frég along the x-axis while being
strongly con ned to the (y; z)-plane. Then one can factorise the eigenfunctions as follows:

nk, (1) = Plfe”‘*x n(Y;2)j i 2.1)



where (y;z) are the so calledtransverse modes,j =";#i is the spin state and L is the
normalization length arising from the periodic boundary conditions imposed on thex-axis (we
recall that in this case the wave vectorky, = 2 n=L , where n is an integer). In addition we
assume a parabolic dispersion law such that:

212
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whereE, are the energies associated to the transverse channels amd is the e ective electron

mass. Note that the second term (i.e. ;:5) is nothing but the kinetic energy of an electron
traveling along the x-axis. For simplicity we consider that there is no magnetic eld such that
E, are spin-degenerate and we can writde,, = E,. Some of these states are depicted in
Fig. 1 along with the chemical potentials of the two reservoirs | .r . One expects that the states
with energies below | will not contribute to the transport as they are always occupied. On
the other hand, the states above | cannot be populated unless so the available energies for
transport are the ones whose energies lie within the 'bias window' | r. Next we recall the
expression of the quantum-mechanical current density in thex-direction associated to a state

nk -

En (kx) = En + (2.2)

) e~
jnk, (r) = oim_ Mkx r x nk, (r) nke (D7 x e, (1)
e. >~k e. >~k
= TP Fecs o (2P ek (2.3)

where e, denotes the unit vector in the x-direction and in the last line we used the distance
between two consecutive points in theky-space,dky = 2 =L (the spinor functions dissapear

becauseh j i =1). On the other hand ;n& = %@Lék*), which is nothing but the connection
between the velocity and the slope of the Bloch bands. Then

. X e _ k

S B e s (2.9

Moreover, sincedky, = dE@k=@E (ky) one otains that the electrical current density associated
to the energy interval dE reads as:

. e . .
in(E)= 2EdEexJ n(y;Z)Jz: (2.5)

Note that the =+ sign corresponds to right/left moving electrons that is for ky > 0/kyx < 0.

Now one has to integrate over the cross section of the wire to gete energy dependent current
Jn(E) corresponding to the energy interval dE. Using the normalization of the transverse
functions (y;z) we obtain:

Jn(E) = 2§dEex: (2.6)

Finally, the net equilibrium current is calculated by: i) summing over all t ransverse modes€,

(counting both right and left going carriers), ii) integrating over th e energy and iii) taking into

account that the occupation of each state is given by the Fermi-Diac distribution function.

This gives: 7
eX ~1

Jeq =21 ] dE(fL(E) fr(E)); 2.7)
n n

wheref . are the Fermi-Dirac distributions in each region of 2DEG. Note that the bias window

L r = €Viq, Where Vg is the source-drain voltage drop. In the linear response regime (it

is for small applied biaseVsy kg T):

@t (E)

fL(E) fr(E)= @,

(L R) =

Vsd; (2.8)



which, after the energy integration allows us to identify the condudance G of the quantum
point contact:
e X

n

Finally, let us assume that the discrete energiesE, depend linearly on some applied gate
potential Vy, a situation which is easily met in experiments. It is clear that by changng Vj
the position of a given energy levelE, w.r.t to the Fermi level in the function f_ changes. As
a consequence, the conductance counts (in units (ﬁ) the number of levels located below the
Fermi energy and consequently displays a series of steps ¥g varies.

The quantization of the conductance with respect to the gate poential is shown in Fig. 2
for a simple model in which we assume that the single-particle spectm consist of equally
spaces levels. More precisely we choo&g, = EQ + eVy, where EQ = o+ n. As the gate
potential increases more equidistant energy channels are activatl and the number of energy
levels that participate to the transport increases. The single-paticle energy is ¢ = 0:5meV
and the energy gap is = 4meV, while the left chemical potential is | = 8:4meV. The steps
in the conductance are washed out at large temperatures as theeps are smoothened.
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Figure 2: The conductance quantization for a system described byqually spaced eigenvalues
(see the discussion in the text).

The rather elementary calculation presented in this section emphages purely quantum
e ects on the transport properties in nanostructures. In the next sections we present general
methods which allow more complicated geometries, scattering prosses and Coulomb many-
body e ects.

3 The partition-free and partitioning transport settings

The transport measurements at nanoscale record the electroniow through a nite system S
(e.g a quantum wire, a carbon nanotube or a quantum dot) submittal to a voltage drop Vsq
between source and drain probes to which it is coupled by some tunad contacts. The central
sample () is therefore open as electrons pass through it from the source probe to the drain
probe. Moreover, the presence of the Coulomb interaction within he small sample calls for a
many-body formulation of the transport problem.

The way in which the electronic ow is generated also poses severalrpblems from the
theoretical point of view. What one usually does in a transport exp&iment is to switch-on a
bias between the source and drain reservoirs, provided that theystem is already connected to
them. To be more precise, one starts from an unbiased situatiof/sq4 = 0 and at some instant
to raises the bias to a xed valueeVgq = , where = L r is the di erence between the
two chemical potentials of the particle reservoirs (see Fig.3). Of gorse, there are many ways
to dinamically switch-on the bias but two options are usually considere in theoretical studies:
i) the adiabatic switching, which insures that at all times the systemsis in equilibrium - this



is the starting point for linear-response calculations and leads to tke Kubo formula [13, 14]; ii)
the sudden switching, for which the bias raises quickly ato to its maximum value.

In this process a transient electronic current passes through teopen and interactingsystem,
followed eventually by a stationary regime. The evolution of such a sgtem must be described
in the framework of the non-equilibrium quantum statistical mechanics. The crucial object
here is the statistical operator W of the open quantum system which solves the Liouville-von
Neumann equation:

. dW(t)
Tt

where H (t) is the Hamiltonian of the coupled system (i.e the two leadsL and R, the central
system S and the 'link’ between them, see for example Eq. (3.3) below). The tine-dependence
of H (t) describes various switching of the non-equilibrium processes (onee just described
above). Moreover, H (t) contains the Coulomb interaction between electrons con ned in the
central sample. For reasons which will become clear below we assurtiet electrons in the left
and right reservoirs are quasi-free, that is they do not interact. Wi, is the statistical operator
of the system at some initial time to. For the transport sccenario described above one can
easily guess that a suitabléW;, must describe thecoupled and unbiasedystem. Let us call this
transport scenario partition-free [12], in the sense that the cental system is coupled to particle
reservoirs at all times. The choice ofWi, is not quite at hand, as the electrons residing in the
unbiased central systems are interacting and, on the other handthe coupled system has many
degrees of freedom (the particle reservoirs are considered to lie nite) such that the energy
spectrum is rather continuous and not easily found by analytical ornumerical methods.

=[H@);W()]; W(t=to) = Win; 3.1
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Figure 3: The partition-free scenario. a) Initially, that is at t < t o, the coupled system is
unbiased (L = Rr). b) At t = to the two chemical potentials are varied such that a bias
is established across the sample. Note that at all times the leads areoupled to the central
system.
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Figure 4: The partitioning transport scenario: a) For t <t o the system isdisconnectedfrom the

leads, while the latter are biased. In spite of the non-vanishing biasthere is no electronic ow
through the system. b) At t = 0 the sample S is coupled to the leads and therefore submitted
to the bias . Note that the chemical potentials of the in nite particle reservoir s are not
changed in the presence of coupling.

A formal solution for the Liouville-von Neumann equation can be written down using the
unitary evolution U(t;to) associated to the whole system (i.e leads+sample+the coupling be-
tween them). Indeed, straigthforward calculations con rm that (here stands for Hermitian
conjugation)

W (t) = U(t;to)W (to)U(t; to) (3.2)



solves Eg.(3.1). Let us note again that in the partition-free scenao one has little chances to
say something about the unitary evolution.

An alternative transport setting is the so called partitioning scenario. It was introduced
in a series of papers by Caroliet al. [15] and is the starting point of the non-equilibrium
Green's function formalism of quantum transport. Later on it was also succesfully employed to
develop generalized master equation methods. As the name sugtgshe partitioning scenario
starts with three decoupledsubsystems: the two particle reservoirs, and the central sampl&
(see Fig.4). One assumes that the nite conducting sample is coupteto two leads (particle
reservoirs) at the initial instant tp, but decoupled at earlier timest <t o. Another di erence
from the partition-free scenario is that the reservoirs are set todi erent chemical potentials

L; Rr beforeestablishing the coupling to the central system. The transport pioblem concerns
the evolution of this open quantum system fort >t 5. The Hamiltonian describing this scenario
reads as follows:

H(t) = Hs + Hjeads + H1 (1); (3.3)

whereHg is the sample Hamiltonian (still containing the Coulomb interaction), Heags describes
the two particle reservoirs (leads) andH 1 (t) is the so called tunneling or transfer Hamiltonian.
It decribes the contact region between the particle reservoirs ath the nite sample and vanishes
for t <t ¢. With these de nitions the initial density matrix operator at t<t  is de ned as:

W(t = to): L R S(t to); (34)
where is the equilibrium statistical operator of the lead ( = L;R)

e H N
T Tre fe (BN )g’

(3.5)

and and N denote the chemical potential and the occupation number operatr of the lead

. The trace at the denominator is taken in the Fock space of the leaslF . Note that the
chemical potentials are xed. On the other hand s(t = tp) describes the isolated central
sample. The easiest choice is to consider that &@t<t o there are no electrons in the nite system
but other initial conditions can be used, provided one knows the mag-body eigenfunctions of
Hs:

Hsj i=Eji; (3.6)
where E denotes the eigenvalue associated to the statei. The setsfE ;j ig can be found
using analytical or numerical diagonalization methods (some exampkewill be provided in the
next setions).

Now let A be an operator acting on the anti-symmetric Fock spacé& = Fs F |¢ags associated
to the whole system (we denoted byFs the Fock space of the central sample and byF|ea¢s the
Fock space of the leads, while stands for the tensor product). The statistical averagehA(t)i
is calculated as:

PA(t)I =Tr e fW())Ag=Tr e fU(L; to)W (to)U(t;to) Ag=Tr e fW(tp)An (t)g; (3.7)

where we used Eq.(3.2) and the cyclic properties of the trace. HerAy (t) is the Heisenberg
picture of the operator A, that is Ay (t) = U(t;to) AU(t;to).

Let us apply this general recipe to the electronic charge operatofQ of the lead . Since
the charge operator is given byQ = eN (e < 0 being the electron charge) one can calculate
the current in the lead as follows:

()i

9o i= Smetwne o= Lmefwmie g

LTrefWOIQ tHIg=Tr W (I g=Tr e fW(t)I 1 (DG (3.8)



where we used again the properties of the trace and in the last line wmtroduced the current
operator:

J = ig[H;N ]: (3.9)

Eq. (3.8) is exactand shows that the calculation of the current requires some knowldge on the
unitary operator U(t;tg). At rst glance one could try to write down a Dyson-type expansion
for the unitary operator U(t;to) in order to calculate the statistical average up to various
orders of a relevant perturbation. In fact, one has todecide based on the physical system
and transport regime under study, which term in the Hamiltonian can be treated as small.
Let us brie y discuss three perturbative choices, each of them leding to a di erent transport
formalism (more details will be provided in the next sections).

1. The weak lead-sample couplingln this case one assumes that the tunneling Hamiltonian
Ht is small; from the physical point of view this situation is realized if the leads are connected
to the nite sample by some tunneling barriers, as in the experimentswith quantum dots. Then
we formally split the Hamiltonian of the coupled system as follows:

H(t) = Hs + Hieads + H7 (1) := Ho + H (1): (3.10)

Note that Ho describes the disconnected systems and one can introduce its éwiion operator

Uo(t;to) = e =t to)Ho = @ =(t to)Hsg =(t to)Hews \here the last identity follows from the

fact that [Hs; Headgs] = 0. The last identity follows from the fact that the operators in Hgs and

Hieads act in di erent spaces (we recall that in generale®*® 6 €*e®). It will be shown below

that as long as the electrons in the leads do not interact one can wré an explicit formula for

e '(t )Hess  Moreover, if the many-body statesj i of Hs and its eigenfunctions are known
we havee '(t to)Hsj j = g I(t 1)E ji These facts will be crucial in order to further continue
the transport calculations. It is useful to switch the statistical operator W (t) to the interaction

picture with respect to the unitary operator Uy according to the well known de nition:

W (t) = Uo(t;to) W (t)Uo(t;to): (3.11)
In this picture the quantum Liouville equation reads:

-2 = e @ w o (3.12)

and by integration we obtain:
T
W (t) = W(to) + = ds[HT (s); W (s)]: (3.13)

to

By replacing Eq.(3.13) in the quantum Liouville equation one obtains:

Z, h i
dVZt(t) = [H7(1); W (to)] + I—{ ds Ht(t);[H7(s);W(s)] : (3.14)

to

We have therefore shown that in the interaction picture the statistical operator obeys and
integro-di erential equation. Note that in the integral kernel (t hat is, in the 2nd term of
Eq.(3.14)) one encountersW (s), which makes the equation non-local in time. Of course, one
can replaceW (s) as given by Eq.(3.13) and expressWV (t) as a sum of complicated nested
commutators containing Ht (s1); Ht (s2); ;A1 (sn) and W(s,). Since Ht is assumed to be
small one hopes that a good approximation forWw (t) is obtained by keeping only a limited
numbers of terms from its expansion. The higher order terms are ssumed to be negligible.

In a separate section we shall show that this idea generates the geralized master equation
for the so called reduced density operator (RDO).



2. Perturbative approach w.r.t the strength of the Coulombriteraction. Let us assume that
the electrons in the nite system interact through a Coulomb potential. The total Hamiltonian
now reads:

H(t) = Hs;o+ Vint + Hieads + H1 (1); (3.15)

where Hs.o is the single-particle Hamiltonian of the non-interacting system andVy is a two-
body operator describing the Coulomb interaction. The main di culty here relies on the fact
that a simple expression for the density operator of the interactirg system does not exist. Oth-
erwise stated, one cannot easily handle neither the terne  (Hsio*Vim  N's) nor the Heisenberg
picture operator J .y (t) which appears in the statistical average of the current. The teanical
solution to this problem leads to the non-equilibrium Green's function (NEGF) formalism and
will be presented in a separate section. Note that the partitioning €enario still holds in the
NEGF formalims and the lead-sample coupling is not assumed to be smalln this method, the
perturbative calculations are being made with respect the the Coulmb interaction. In fact, it
will turn out that the e ect of H+t will be included, up to any order, in the so called self-energy
of the leads.

3. A bias which is adiabatically applied on the leads.

Let , be a smooth switching function such that for > 0 one has 0 (t) 1and:

et if t O
=7 51 ° (3.16)
Then a constant voltagev adiabatically applied on each lead generates the following per-
turbation: X
V()= (1) v N : (3.17)

Again, we split the Hamiltonian of the total system in a form which singles out the perturbation,
in this case the bias:

H(t) = Hs + Hieads + HT + V(1) := Ho ++ V(1): (3.18)
What can be said about the statistical operator W (t) in this case? It is easy to check that:
W (t) = Uo(tito) (tito)W (to) ( t)Uo(t o) ; (3.19)

where we introduced the operator (t;tg) = U(t;to) Uo(t;to) = U(tto) e H(t to)Ho, By
straightforward calculations one can write down the equation of mdion for the operator :

d .
gi ( Bto) = i=( Eto)V(1); (3.20)
where V (1) is the bias operator in the interaction picture w.r.t Hgo. Then the Dyson equation
reads: L Z,
(tte)=1+ &~  ds( sito)V(s): (3.21)
T o1

In order to obtain a perturbative expansion of the statistical operator in terms of the external
bias one has to plug Eq.(3.21) into Eq.(3.19). The 1st terms are obtaiad by approximating
( s;tp) 1 inthe integral of the Dyson equation. Then one gets:

'z, Z,
W(t) = Up(tto) 1 ~  dsv(s) W(t)) 1+~  dsv(s) Uo(t:to)
-1 -1
i Ze h | |
= W(to) - ds e (¢ DHoy(s)e =(5 DHo W(ty) + O(VA): (3.22)

1



Now it is clear that when using the above expression folWV (t) in the calculation of the current
through the lead the reults will be of 1st order in the applied bias. Up to some technical
details (i.e. performing the adiabatic limit ! 0 and taking the lenght of the leads to in nity,
i.e the so called thermodynamic limit) this is nothing but the linear-response approach behind
the Kubo formula.

The partitioning scenario was questioned [12, 16] because of its ppeonnection to real-life
experiments which are rather performed in the partition-free seting. However, the partition-
ing approach captures plenty of transport phenomena and is easjo implement numerically.
Another advantage is that it provides a common starting point from where one can develop,
under speci ¢ assumptions and approximations, the main quantum tansport formalisms: the
Landauer formalism, the master equation approach and the non-guilibrium Green's function
theory.

4 The Landauer-Bsttiker formula for non-interacting tran S-
port

The scattering approach to quantum transport relates the current or the conductance of a
mesoscopic system to its transmission properties of the latter. Blere proceeding to more elab-
orate calculations let us have a grasp on the formula based on the sjpfe counting argument we
already used in Section 2. There, we derived the current through @ne-dimensional channel in
Eq. (2.7), by collecting the contribution of each quantum channel r subband) to transport and
taking into account that the occupation of these channels is esseially controlled by the equilib-
rium Fermi distributions of the leads. We also tacitly assumed that electrons entering or leaving
the channel do not experience any scattering in the contact regiass where the reservoirs are
placed. Formally, relaxing this assumption of re ectionless contacé amounts to introduce some
energy-dependent transmission coe cientsT g (E) and Tg. (E) which represent the probability
that an electron incident from the electrode L=R reaches the other electrodeR=L propagating
through the mesoscopic sample. This construction suggest that aeasonable generalization of
Eq. (2.7) would be to add the transmission functions within the integral over energy.

Actually, in the the nite-bias regime the Landauer-Buttiker [17,1 8] formula for the steady-
state current turns out to be:

2eZ 1
V)= + ) dET(E;V)(fL(E) fr(E));

whereT(E) := Tir (E) = Tre (E) is the transmittance of the central system which depends on
energy and biasV. The identity T.r (E) = TrL (E) only holds in the absence of the magnetic
eld.

In spite of its simplicity the Landauer-Buttiker formula is a powerfu | theoretical tool in
mesoscopic physics with applications ranging from transport throgh quantum junctions, wires
or carbon nanotubes to thermal transport. Moreover, a lot of work has been done to present
more elaborated derivations of the formula, e.g from the linear-regonse quantum theory [19].

4.1 The proof of the Landauer-Bsttiker formula

The proof included below is borrowed from Ref. [20] and has certain dvantages over other
less rigorous or heuristic proofs: i) it is derived in the partitioning approach, establishing
therefore a unitary framework for all transport methods (GME and non-equilbrium Keldysh
formalism); ii) uses in a rigorous way standard results from the scatring theory leading directly
to the transmittance matrix T(E), iii) the current is calculated starting from a well-de ned
guantum statistical non-equilibrium problem. For the sake of simplicity we shall skip some of

10



the mathematical subtleties (the interested reader could identifythese aspects in Ref. [20] and
from the references therein).

Note that we work in the partitioning setting and the electron-electron interaction is ne-
glected both in the sample and the leads. Thesingle-particle Hamiltonian of system reads
as:

H =Hs+ H_ + Ht: (41)

P
Here H. = N:l H is the Hamiltonian of the N particle reservoirs (or leads). Each lead

is described by the Hamiltonian H and has chemical potential  and inverse temperature

=1=kgT .

Let fj mig be an orthonormal basis inHs and j mi a similar basis inH , whereHs and
H are the single-particle Hibert spaces of the sampl& and lead . The Hilbert space of the
entire system is thereforeH = Hs N_; H . For lattice models the two bases correspond to the
'sites’ of a nite 2D sample and 1D chains describing the leads. More pecisely, if the sample is
described byM s sites one hagn = 1; Mg while for each lead the number of sites is allowed to
be in nite. Assuming for simplicity that the sample S is suddenly coupled to some semiin nite
leads at instant t = 0 the tunneling Hamiltonian H+ acquires the form:

X X
Hr = Vi jmihmj+ V, jmihmj ; 4.2)

m Mg

where the coe cients V, set the coupling strength of the pair of statesfimi;j mi. This
Hamiltonian can be readily written in the 2nd quantized form but its expression will not be
needed here as we are working only with single-particle operators.

Let us note that the lead-sample couplingV, is in fact a nite-rank rank matrix. In the
lattice representation the 2D sample is described by a nite number 6 sites and therefore in
Eq. (4.2) the sum overm is restricted to Ms. For simplicity we can actually consider that
jmi and j mi are precisely the functions localized on the siten or m . More generally, one
should assume that in the coupling HamiltonianHt one can use some localized function'sy,
and ' ,, from the Hilbert spacesHs and H . The problem of deriving appropriate tunneling
Hamiltonians is an old one and goes to Feuchtwang [21] and Caroli [15].

The current J in a given lead requires (see Section 3) the calculation of the statistical
average Tr= f W (t)J' gin the multi-particle Fock space F derived from the single-particle Hilbert
spaceH. Here A denotes the second quantized representation of the single-pacte operator A.
Therefore W (t) is the statistical operator and J' is the 2nd quantized current operator in the
lead

The current in a given lead is obtained by computing the trace of the corresponding
operator w.r.t the density operator W of the coupled system. Using the previous results and
the cyclicity properties of the trace we get:

h (t)i TrefW ()T g=ieTre tW [ N Jg= ieTre fO(t to) s (to) Neass O (L to)[F; N 1g
ieTr £ f s (t0) Meads Do(t; o) 0 (8 to)[F; N 1Ot t0) Oy (85 to)g; (4.3)

where we also used the fact that the initial density operator commtes with the unitary evolution
Oo(t; to) of the decoupled system, such that one hasW (to); Oo(t; to)] = 0. Without loss of
generality we settg = 0 and use the simpli ed notation U(t) instead of U(t;to).

Now we shall use the assumption that electrons do not interact, nigher in the leads not in
the sample. This means that the trace on the multiparticle Fock spae reduces to the trace on
the single-particle Hilbert spaceH such that for any second quantized single-particle operator
A one can write

Tre f As(to) NeadsAG = Tr 1t s(to) leadsAQ: (4.4)
This means that one can express the average current in terms of dtless' quantities:
h (t)i = ieTruf s(to) teadsUo()U (D[H;N JU()Uq () g: (4.5)
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At this point one should recall that the Landauer-Budttiker formu la provides the stationary
current which is de ned here as the long-time limit:

3 = lim W )i (4.6)

Let us mention here that the existence of a non-equilibrium steadystate should not be taken
for granted. In some case it simply does not exists. Next, we obsee that the long-time limit
establishes a direct connection to the Meller operator from the sattering theory [22]:

+ = tlli:{n U (t)Uo(t) 1eads = tl!]m U(t)UO (t) leads; 4.7)
P
where |eads = N:1 is the orthogonal projection on the Hilbert space of the reservois.

Without entering into more mathematical considerations which are far beyond the narrow
aim of this tutorial (see for example the very general theory devioped in Refs. [23,24]) it is
important to notice here that the energy spectrum of the semiin nite leads is continous and
that the assumption on the spatial localization of the coupling coe cients ensures that the
Meller operator exists.
Taking into account the de nition of the Meller operator and the fa ct that the projection

on the leads' subspace eliminates the initial density matrix s of the sample the steady state
current is given as:

J =ieTruf + jeadsFo teads +[HT:N Jg=ieTruf jeadsFo teads +[HT:N ] +g; (4.8)

where we introduced the notation

X
leadsF0 leads = fFE;) (H):=fep (HL): (4.9)
=1
HerefFP  (x) are the usual Fermi-Dirac functions:
fF x)=@1+e & N h (4.10)

With this notation the current acquires the compact form:

J =ieTryf +fep(H) L[HT;N Jo: (4.12)
Now it easy to check by direct calculation that:
X
[Hr;N ]= (Vi jmibm j Vg jm ihmj); (4.12)
m

which then allows us to perform the trace over the single-particle Hilkert space. The result is:

X
J = e n; +f|:D(H|_) +Vn ni hn; +f|:D(H|_) +Vn n i
"X
= 2e  Imfhn; +fep(HL) .V, nig: (4.13)

n

To obtain the last line we used the identities:

m; +f|:D(H|_) +Vn ni=h +Vn fFD(HL) +nn i = m;Vn +f|:D(H|_) +nn i

(4.14)
Now we shall use the so called spectral representation of the opaor-valued function
feo (HL): Z
X L0 O
fro (Hi) = dEfeo (E) ¢ ih £ (4.15)

(Hu)
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where (H_) denotes the energy spectrum of the leads (which covers a contius nite or
in nite interval and depends on the model Hamiltonian H_) and (EO;) are the generalized
eigenfunctions ofH at a given energyE. Using this spectral representation in Eq. (4.13) we
have: x x Z o o
J = 2 def (E)imm; . g’ ih g/ .V, ni:

n (Hy) ' '
The term inside the integral can be calculated as follows (recall thatthe number operator on
the lead coincides to the projection operator, thatis = N ):

mm; . Qi vyni = h & . (Vyinihn j Voijnih ) + @

2
1 .
= Sh € JHENT Wf () £
= ImH; .« 25 L P (4.16)
Using the last expression the stationary currentJ can be written as:
z
J = 2 dEf (E)mtH7 . & . O
Z (HL)
dEf (E)mmH; . @ , O (4.17)
5 (Ho) , ’

where we singled out the term corresponding to the lead from the other ones. Eq.(4.17) can
be further manipulated using again two standard results from statonary scattering theory:

ieio= L Qi (4.18)
ioei o= Qi (Ho E i0) Hrj g (4.19)

The rst equation de nes the scattering states of the coupled system while the 2nd is nothing
but the Lippmann-Schwinger equation. Let us consider now the 1sterm in Eq. (4.17):

H‘|T+|(EO;); +(Eo;)i:H'|T+|(EO;); E;i
S s Dint s Qe £ i) MG i @20)

In the 1st term in the above equation we recognize the diagonal eleemt T (E) of the T-matrix
from the scattering theory:
T (E)=h 9 Hr i (4.21)

In the 2nd term one has to use the Sohotsky formula:

1 1

EoE g (E° E)+ P 5 E (4.22)
and the spectral representation ofHq which lead to:
imbHy O (Ho E i0) Hrj % i
= M L @ O ih & Hr iz
=tHr » 25 P QHr s Qi= ih Qe L D02 (423)
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Now one has to use the optical theorem from scattering theory with says that:

0 1
. . X
T (E) T (E)= 2ImT (E)= 2i QT (E)j*+ iT (BE)*A; (4.24)
6
from which one concludes that
. X
ImT (E)= jT (E)j*+ iT (BE)j%: (4.25)
6
As a result the rst term in Eq. (4.17) reduces to:
z X
2e f (E) T (BE)j% (4.26)
(Hu) 8

We now consider the term in Eq. (4.17), that is the term containing the Fermi function f .
One has to use again the Lippmann-Schwinger equation and the sptal representation of Hp:

Hr . O, L Pi=hHr + P (Ho E i0) Hr £ i

= dEMHr £ Db @ (EC E i0) Hr L i (4.27)

Plugging the last line in Eq.(4.17) one notices that the 2nd term in this equation equals
i jT j(E)?f (E). Collecting all the terms now leads to:
z
I = 2e dE(f (E) f (E))jT (E)j% (4.28)
(Ho)
which is nothing but the Landauer-Buttiker formula.

A natural question is whether the Landauer formula could be also deved in the partition-
free setting. In this setting one has to compute the current due o the applied (possibly large)
bias on the leads. At rst step the problem was considered in a simpli ed form, namely to
derive the Landauer formula in the linear-response regime. Clearlythe suitable starting point
is the Kubo formula for the conductance. This result was presentd by Baranger and Stone [19]
some time ago and rigourously proved within a lattice model in Ref. [25].The main problem
here is that the perturbation (i.e the bias) is not localized in space andbecomes unbounded
when the leads are in nite.

5 The master equation method for open quantum systems

5.1 The reduced density operator

The common aim of the so called master equation (ME) methods is to diain "enough" infor-
mation on the density matrix operator W (t) of an open quantum system in order to compute
statistical averages for relevant observables (e.g for the curr¢ hJ i owing from the particle
reservoir to the nite sample to which it is coupled).

Quite generally, the total Hamiltonian of a system S coupled to some reservoir or environ-
ment degrees of freedom reads as:

H(t)= Hs + Hr + Hsr(t) := Ho + Hsr(t); (5.1.1)

whereHsg stands for the system-reservoir coupling andHg is the Hamiltonian of the reservoir.
In the transport settings introduced in Section 3 the sampleS was a purely electronic system
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connected to particle reservoirs. Here, for the sake of generajitve allow for both particle and/or
bosonic reservoirsR. Moreover, Hg could be the Hamiltonian of a so called hybrid quantum
system containgcoupledfermionic and bosonic modes (some examples will be provided below).
For now, the explicit expression ofHsg is not needed.

As in Section 3, the starting point of the theoretical investigations leading to the ME is the
Liouville-von Neumann equation for W (t) which we now rewrite in a more convenient form:

-ERL = LOWD: W)= st k; (5.1.2)

where we assumed that the initial density matrix is given in a tensor poduct form and we
introduced the notation:

L(t)= Lo+ Lsr; Lo =[Ho; [ (5.1.3)

For further use we shall also need:
Ls =[Hs; ] Lsr =[Hsr; I (5.1.4)

The strategy behind the ME approach was put forward in many theaetical studies (see for
example the classical reviews and textbooks [26{32]) and is meant tby-pass the notoriously
di cult problem to compute W (t) directly. Instead, one looks at a more "friendly" object,
namely the reduced density operator (RDO) de ned as:

(t) =Tr rfW(t)g; (5.1.5)

where Trg denotes the trace over the typically in nite degrees of freedom of the reservoirs.
Clearly, is still an operator acting on the Hilbert/Fock space of the systemFs. It turns out
that under appropriate conditions (t) has all the required properties of a density operator
in Fs (namely it is Hermitian, positively dened Tr f 2g 1, while Tre, = 1). Then one
can use the RDO to compute statistical averages associated to sbrvablesA of the systemS.
Moreover, the RDO obeys an equation of motion, henceforth nan@ master equation, which
can be solved exactly or numerically, providing some approximations & made.

5.2 The generalized master equation for hybrid quantum syst ems

General master equations for open quantum systems has beenrdleed in many recent textbooks
or review papers. Here we shall use the projection method due to &kajima and Zwanzig [31]
which leads to the non-markovian version of the master equation. tishould be said that earlier
studies rely on markovian or Lindblad versions of the ME and were moty focused on systems
coupled to a thermal reservoir or to two-level atoms interacting wth a quantized optical mode
of a cavity in the presence of dissipative processes (the so caled slizative Jaynes-Cummings
model). In these cases the system, while beingpen in the sense that it is coupled to its
environment, is described by a constant number of particles. In tlis context one performs
advanced studies on oscillations and photon dynamics in optically actig systems.

On the other hand, transport calculations based on the master egations for purely fermionic
systems are more recent (see for example Refs. [33{35]). The sihntial experimental progress
in preparing various molecular structures, nanoelectromechanidasystems or quantum-dot cav-
ity systems calls for theoretical methods able to capture thecoexistenceof fermionic and bosonic
degrees of freedom. Then, the extension of the ME method to hyfd quantum systems is a
natural step forward.

From the formal point of view the projection technique is quite geneal and the derivation of
a master equation for the RDO does not depend on a speci ¢ modeli.e. on the geometry and
spectrum of the central system or on the correlation functions &fermionic/bosonic reservoirs).
In general, as long as one can write down a system-reservoir coup§jnHamiltonian Hsg a
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master equation can be derived. Although this step has been done iseveral papers on vibron-
assisted transport in nanoelectromechanical systems [37,38] or the context of cavity quantum
electrodynamics [39,40] here we shall closely follow the derivation @notations from Ref. [36].

For the sake of generality we shall consider a hybrid syster§ made of an electronic structure
S: which is coupled ton, particle reservoirs characterized by chemical potentials and temer-
aturesf |;Tig, 1 =1;2;::5;n,, and a second subsystens, made of bosonic degrees of freedom
(i.e. a nanomechanical resonator in the quantum regime, or a singlexode quantum cavity).
The subsystemS, can also be coupled to thermal or photonic baths which are descrilikas
a collection of oscillators with frequenciesf! «g. Let Fs, and Fs, be the Fock spaces associ-
ated to the two systems. Typically Fs, is a set of interacting many-body con gurations of the
electronic system whereas-s, is made by harmonic oscillator Fock states.

The dynamics of the open systemS; and of nearby “detector' systemS, are intertwined
by a coupling V. Under a voltage bias or a temperature di erence the systemS; carries an
electronic or a heat current which need to be calculated in the presee of the second subsystem.
Conversely, the averaged observables &; (e.g. mean photon number) will also depend on the
transport properties of S;. The Hamiltonian of the hybrid structure is:

Hs = Hs1 + Hsz + V: (5.2.1)

In this work Hs, will describe various Coulomb-interacting structures: a single quatum
dot, a 2D wire or parallel quantum dots. We shall denote byj i and E the many-body con gu-
rations and eigenvalues oHsg,, thatis one hasHs,j i = E ] i. Hs, can be equally expressed in
terms of creation and annihilation operatorsfc, ;c, g associated to a spin-dependent single-
particle basisf , g of a single-particle Hamiltonian h(sol) (see the next sections for specic
models), such that:

Hs, = HY + Ve; (5.2.2)

where H(o) is the 2nd quantized form ofh(o) and V¢ is the Coulomb interaction. Similarly,
the e|genfunct|ons and eigenvalues of the “2nd subsyster@, will be denoted by jji and g
such that Hs,jji = gjji. As for the coupling V one can mention at least two examples: the
electron-photon coupling in a quantum-dot cavity and the electronvibron coupling in nano-
electromechanical systems.

As already mentioned the system-reservoir HamiltonianHsgr contains the coupling to the
leads and the coupling of a bosonic mode to a thermal or leaky bosonenvironments Heg :

Hsr(t) = Hr(t) + He: (5.2.3)

Note that the interaction with the bosonic environment Hg does not depend on time. The
lead-sample tunneling termH+t carries a time-dependence that will be explained below. The
Hamiltonian of the reservoirs,

Hr = Hieads + Hpath (5.2.4)

describes at least two semiin nite leads (left-L and right-R) but could also contain bosonic or
thermal bath.

This general scheme allows one to recover several relevant settis. If S; describes an
optically active structure and S, de nes a photonic mode thenV could become either the
Rabr or the Jaynes-Cummings electron-photon coupling. The abs®e of the particle reservoirs
simplies Hs to well known models in quantum optics, while by adding them one can sidy
photon-assisted transport e ects (e.g. Rabi oscillation of the plotocurrents or electrolumines-
cence). Also, by removingS;, V and the bosonic dissipation one nds the usual transport
setting for a Coulomb interacting purely electronic structure.

Let "'(q) and ! be the single particle energies and wave functions of theth lead. For

q
simplicity we assume that the states on the leads are spin-degendmso its energy levels do

16



not depend on the spin index. Using the creation/annihilation operators C‘él / cq associated
to the single particle states, we can write:
X Z x|
Hieads = H = dq " (C])C\(/“ Cql - (5.2.5)
[

As for the bosonic bath, it is described by a collection of harmonic odttators with frequencies
I« and by corresponding creation/annihilation operators b =k:

X
Hoan =  ~kblb: (5.2.6)
k

The tunneling Hamiltonian written in the 2nd quantized form reads as:
Z

X X
Hr(t) = dg '(t)(TgnCy & + hic); (5.2.7)

I n
where we considered without loss of generality that the tunneling pocesses are spin conserving.
For the simplicity of writing the spin degree of freedom will be henceforth tacitly merged
with the single-particle index n and restored if needed.

The time-dependent switching functions '(t) control the time-dependence of the contacts
between the leads and the sample; these functions mimic the preses of a time dependent
potential barrier. We emphasize that in most studies based on ME mthod the coupling to the
leads is suddenly switched at some initial instantt, such that for each lead '(t) = (t to)
where (x) is the Heaviside step function. This choice is very convenient if one iposes the
Markov approximation in view of a time-local Master equation. Here we allow for more general
switching functions: i) a smooth coupling to the leads or ii) time-deperdent signals applied
at the contacts to the leads. In particular, if the potential barrie rs oscillate out of phase the
system operates like a turnstile pump under a nite constant bias.

The coupling Tc:n describes the tunneling strength between a state with momentung of the
lead | and the state n of the isolated sample with wavefunctions . In the next sections we
shall show that these matrix elements have to be calculated for edcspeci ¢ model by taking
into account the geometry of the system and of the leads.

The initial state Wy := W (to) factorizes as:

Wo= o leads bath = 0 R; (5.2.8)
where the equilibrium density operator of the leads reads:
Y e (Hi Ny
Trife (Hi NDg’

(5.2.9)

leads =

and | and N, denote the chemical potential and the occupation number operair of the lead
[. Similarly,
Y Uiy by =k U=k
bath = € " KBbke T g ke Ty, (5.2.10)
k

Finally, o is simply a projection on one of the states of the hybrid system, andas such its
calculation must take into account the e ect of the hybrid coupling V (see the discussion in
Section 2.2).

We now de ne two projections:

P = rTrrfg Q=1 P: (5.2.11)
It is straightforward to check the following properties:

PLs = LsP; PLsr(t)P =0: (5.2.12)
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The Liouville equation (5.1.2) splits then into two equations:

i~P% = PL({t)PW(t)+ PL(H)QW(t) (5.2.13)
i~Q@g:) = QL()QW(t)+ QL()PW(t); (5.2.14)

and the second equation can be solved by iterationsT( being the time-ordering operator):
QW (t) = é Zt: dsT exp ': Zst ds'QL(s®) QL(S)PW(s): (5.2.15)

Inserting Eq. (5.2.15) in Eq. (5.2.13) and using the properties oP we get the Nakajima-Zwanzig
equation:

@Wt)
@t

i~P = PLsW(t)
1 Z4 i 2
+ i—PLSR(t)Q dsTexp — ds"QL(sYQ QLsr(S)PW(s)5.2.16)
- to ~ s
In order to have an explicit perturbative expansion in powers ofHgsg (t) one has to factorize
the time-ordered exponential as follows:

L Z,
Texp I: ds®QL(s9Q =expfQLoQg(l+ R); (5.2.17)

where the remainderR contains in nitely deep commutators with inconveniently embedded
projection operators. Usually one considers a truncated versionf the Nakajima-Zwanzig equa-
tion up to the second order contribution w.r.t. the system-resenoir Hsg:
1 Z
i~ ()= Ls (t)+ =Trr Lsr dse ' Lol gr(s) r () (5.2.18)
to
Now, by taking into account that for any operator A acting on the Fock space of the hybrid
systeme oA =e “HoAe=™Mo and denoting by Up(t;s) = e =(t $)Ho the unitary evolution
of the disconnected systems we arrive at the well known form of ta GME:

i Z¢ h h i
[Hs; (0] =U(tto)Trr ds Hsr(t); Hsr(S); «(S) r Uo(t; to)

to

- Zi h h i
[Hs; (1) _I—~U§(t;t0)TrR ds Hsr(t); Hsr(S); «(S) r Us(t;16)2.19)

to

i~(t)

where in order to get to the last line we removed the evolution operabrs of the environment
from both sides of the trace. At the next step one observes thatvhen performing the trace over
the reservoirs and environment degrees of freedom the mixed ters in the double commutator
vanish because each of the coupling termsl+ and Hg carries only one creation or annihilation
operator for the corresponding reservoir such that:

Ter eé|(t)h<(s) RO = Tr Ieadsf eé|(t) leads 9 Tr path fh((S) bath § = 0: (5-2-20)

Moreover, the time evolution of each term can be simpli ed due to thecommutation relations
[Hoath ; HT] = [Hieads; He] = O:

H (1)
He (1)

ei:tH s ei:tH leads HT e iftH Se %IH leads X (5221)

i i i i
eth s eth bath HE e tHs e = tH patn : (5222)
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The GME then reads as:

i 1 Z¢ h h i
) = Z[Hs; (O] S US(610)Tr teaus ds Hr(t); H7(S); «S) teass  Us(tito)
to
1 Z¢ h h i
— UL (tt0)Tr bath ds He(t); He(s); «S) ban  Us(tito) (5.2.23)
to
= E[Hs; ()] D ieads[;t] D ban[;t] (5.2.24)

Eq. (5.2.24) is the generalized master equation for our hybrid systa. It provides the reduced
density operator in the presence of particle and bosonic reservoirs and also takes maccount
the memory e ects and the non-trivial role of time-dependent sigrals applied at the contact
regions through the switching functions |. The second term in Eq.(5.2.23) is needed only if
Hs, describes a quantized optical or mechanical oscillation mode. In thisase we shall assume
that the Markov approximation holds and the coupling to dissipative bosonic modes can be
cast in a Lindblad form. For further calculations one has to solve theGME as a system of
coupled integro-di erential equations for the matrix elements of the RDO with respect to a
suitable basisin the Fock spaceFs = Fs, F s,. We discuss this issue in the next subsections.

The starting point in solving the GME is to write down the matrix element s of the system-
environment operatorsHy and Heg w.r.t. the “disjoint' basis formed by the eigenstates ofHs,
andHs,, j;ji=7jij ji.

However this strategy does not help much when evaluating the timeeolution (see Egs. (5.2.21)
and (5.2.22)) asHs is not diagonal w.r.t. to j;j i such that one cannot easily write down the
matrix elements of the unitary evolution Us(t;tp). In fact we are forced to solve the GME
by using the eigenfunctionsj' ;) and eigenvaluesk, of the Hamiltonian Hs. The former are
written as: X
o= Vi (5.2.25)

i
Here the notation j' ) is meant to underline that the state ' , describes the interacting system
S, in the sense that both the electron-photon and Coulomb interactons were taken into account
when diagonalizingHs. This notation also prevents any confusion if the “free' stateg ;j i will
be also Iak?:;elled by a single index®. In that case the above equation is conveniently rewritten
asj' p) = 00 Vr(,E)ij. Note that p is usually a multindex carrying information on relevant
guantum numbers. In most cases of interest the coupling/ between the two systems leads to
a strong mixing of the unperturbed basis elementg ;j i and is not necessarily small. Therefore

we shall not follow a perturbative approach but rather calculate E, and the weights V(jp) by
numerically diagonalizing Hs on a relevant subspace of “free' states.

Prior to any model speci ¢ calculations or numerical implementationsit is useful to comment
a bit on the two dissipative contributions in Eq. (5.2.24). It is clear that the evolution operator
Us describes the joint systemsS; and S, and therefore the hybrid interaction cannot be simply
neglected neither inDeags NOr in Dpatn ; ONe can easily check thaty does not commute with
Heg or Ht.

The diagonalization of Hs poses serious technical problems because both spades, and
Fs, arein principle in nite dimensional. Besides that, the Coulomb interaction in Hs, prevents
one to derive the interacting many-body con gurations fj ig analytically.

A step-by-step diagonalization procedure leading to a relevant sebf interacting states of
the full Hamiltonian has been described in Ref. [36] and requires seked “intermediate’ diago-
nalization operations.

Once this procedure is performed one can express the systemwvimonment couplings Ht and
Hg in the fully interacting basis and use the eigenvaluess, to replace the unitary evolution Us
by the corresponding diagonal matrixe & .. Finally, the GME is to be solved w.r.t. the
fully interacting basis (see the examples in the next sections).
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The last step before numerical implementation requires the calculdbn of the system-
environment couplingsHt and Heg w.r.t. the full basis j' ). Clearly, to this end we shall use
the unitary transformations j i$j i andj;ji$j ') which are already at hand due to the
stepwise diagonalization procedure introduced in the previous sein. Then let us introduce
some generalized “jump' operators collecting all transition betweerpairs of fully interacting
states generating by tunneling of an electron with momentumq from the | th lead to the
single-particle levels of the electronic systens;:

X X
T(@ = Topo(@i' p)( poj s (T(@Dppe= Tga(" piChi' o) (5.2.26)
pip° n

Then the dissipation operator associated to the particle reservos reads:

1 x ?
Dieadgs[;t]= ) dg ((t)([T; ql(t)] + hic) ; (5.2.27)
I=L ;R
with the following notation:
z t
at) = ULt) ds i(s) q(s)e® D @ug(t);

to

q(8)=Us(s) TV (9@ f1) (9T V(L)

and where for simplicity we omit the energy dependence of the Fermfunction f,. Similarly, the
bosonic operators have to written down w.r.t. the full basis which then leads to the calculation of
Dpath - Under the Markov approximation w.r.t. the correlation function of the bosonic reservoir
the latter becomes local in time.

The GME is solved numerically by time discretization using the Crank-Nicholson method
[41] (see the details in Ref. [36]).

As already stated in this section, the reduced density operator alls us to calculate statis-
tical averages of various observable® of the hybrid system:

hOi=Tr ¢f (t)Og: (5.2.28)

Useful examp,&es are averages of the photon number operatdd " = a¥a and of the charge

operator Q = | ¢,c,. Finally, the average currents in a two-lead geometry (i.e.l = L;R can
be identi ed from the continuity equation:

QI =Tr g fQ (t)g=J_(t) JIr(t): (5.2.29)

In the next two sections we present two applications of the masterequations and provide
some numerical examples. For simplicity, the master equation will be irplemented in its marko-
vian form. This approach is valid as long as the coupling to the leads, simated by the switching
functions |, is established suddenly at some initial timetg.

6 Vibron-assisted transport in nano-electromechanical sy S-
tems (NEMS)

6.1 Experimental state-of-the-art

The nanoelectromechanical systems (NEMS) aréybrid devices made of a nanoresonator (NR)
and a nearby mesoscopic system [42] connected to particle reseins [43]. The two subsystems
are usually coupled through their mutual Coulomb interaction: typic ally the NR is covered with
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a metallic layer and its displacement controls the electrostatic energ of the nearby electronic
system (e.g a single-electron transistor (SET) [44]). Then the nedy conducting system oper-
ates as a motion transducer. The changes in the transport or chging properties of the SET
are “signatures' of the vibrational modes of the NR, in the same ways a mesoscopic Coulomb
drag current in bilayers or parallel QDs is the response of the momdnm transfer between
the two subsystems. The typical example of vibronic e ect is the sveeping of the Coulomb
blockade in a SET by an oscillating cantilever (see the refs. in [42]) this ect is similar to the
Franck-Condon (phonon) blockade in molecular junctions. Convesely, a backaction mechanism
is noticed: the NR oscillation amplitude and frequency change when om particle is added to
the SET. In a more general context, NEMS provide a stage for stdying the coupling between
macroscopic motion and quantum transport. Also, NEMS can be use to set new standards in
mass detection.

The impressive state-of-the-art in the eld of nanomechanical egineering allows nowadays:
i) the observation of quantized vibrational modes of a nanomechaical resonator [45, 46] and
ii) their controlled entanglement with the transport processes of rearby mesoscopic system (e.g
carbon nanotubes (CNTs), quantum dots (QDs) [42]). Due to theg achievements, studying
NEMS evolved into a distinct and timely branch of mesoscopic physics ith close connections
to materials modeling, quantum metrology, spintronics and nanosciace.

NEMS can either be fabricated using bottom-up (few-layer graphae, carbon nanotubes etc.)
or top-down (singly-clamped cantilevers, doubly clamped beams, nmabranes, micromirrors or
macroscopic bars) techniques. One example of a NEMS is the SET (gife-electron-transistor)
in which electrons can ow through a biased NR that can vibrate overa gate potential.
LaHaye et al. demonstrated in [44], a sensitivity of four times the staadard quantum limit using
a radio-frequency SSET (superconducting SET). Position detedon was achieved [54] with a
mesoscopic SET device.

Similar features were already known and studied earlier in micro-medchnical systems (MEMS).
In turn, the more recent investigations of NEMS at very low temperatures (down to tens of mK!)
aimed to answer a fundamental question [43]: what happens when ghmotion of a macroscopic
object reaches the quantum-limit regirpe and the nanoresonatorurns to a quantum oscillator
with a displacement uncertainty ug = ~=2m! ¢ associated to the ground state (the so called
zero-point displacement-ZPD), ! o being the mechanical oscillation frequency andn the NR
mass. This quantum limit of motion can be reached for squeezed stat while at the same
time back-action perturbing the system following a displacement meaurement. This standard
guantum limit of motion represents the minimum dispersion of the displacement achieved when
the motion of an oscillator is measured.

Clearly, the successful detection of this regime requires both laey frequencies and small
average thermal occupation of the 'vibronic' modes, that is~! g KgT [42]. The ZPD
measurement of macroscopic resonators at cryogenic temperaes has been reported by several
experimental groups [45,46] and the coupling between single-eleon tunneling and mechanical
de ection is now established [47,49]. Typical frequencies range fro 500MHz to 1.8GHz while
the NR mass can go down to 10%° kg. For CNT resonators the detected displacement is of
order picometers. NEMS are eventually expected to provide new inghts on the fundamental
question of the classical-to-quantum transition.

The e ects of electron-vibron coupling on the transport properties of molecular junctions or
nano-electromechanical systems (NEMS) were systematically capred in di erent experimental
setups. As already mentioned above, the parameter which decideshether the dynamics of the
vibrational mode should be described according to classical or quamm mechanics is the ratio
~l=k g T. In the case of an AFM tip oscillating above a QD deposited on a substite ! is around
hundreds of MHz and there is no way to discern quantum e ects. Naoetheless, these low-
frequency vibrations strongly alter the QD spectrum and therefae the tunneling to and from
the substrate [56]. Then, a doubly-clamped CNT coupled to two leadsnd also put into motion
by an external actuation shows di erent transport characteristics [50]. More recently, Weber
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Figure 5: A nanoelectromechanical system with external electrosvibron coupling. A meso-
scopic system is coupled to source and drain particle reservoirs whilthe oscillations of the
nearby NR are driven or modi ed when electrons tunnel through the device. Conversely, the
current carries the signature of vibron dynamics. The tunneling c® cients g are time-
independent here.

et. al [48] showed that two quantum dots de ned within a CNT and link ed by a suspended
part of the same nanotube are coupled by the high frequency longitdinal stretching modes. At

the theoretical level these experiments are discussed using théngle-level Anderson-Holstein
model which described the so-called capacitive model (see below).

6.2 The Anderson-Holstein model of electron-vibron coupli ng

In the Anderson-Holstein model (AHM) one assumes for simplicity that the transport through
the electronic subsystem (for example a quantum wire - QW) is due ta single spin-degenerate
level. We denote the energy of this single-particle state by and the strength of the on-site
Hubbard interaction by U. Then the system is described by the Hamiltonian:

X
HQW = dec + UN- Ay, (621)

¢ /& are the annihilation/creation operators for the electrons within the QW.

In order to assemble the nanoelectromechanical system a singleetie nanoresonator of fre-
quency! is brought in the vicinity of the electronic system. A sketch of such ahybrid system
is given in Fig. 5. For example, the nanoresonator could be a singly-ctaped cantilever wet into
the quantum regime, that is whose oscillation are quantized. Its Hanitonian is expressed in
terms of the creation/annihilation operators for the vibrons:

Hyg =~ @a+ % : (6.2.2)

Note that for simplicity we shall omit in the following the zero-point energy ~!= 2. Finally, the
electron-vibron (phonon) interaction is described by the following Hamiltonian:

X
Hel w = dc (a¥+ a); (6.2.3)

where is the electron-vibron coupling constant. It should be mentioned hee that must
be derived by taking into account the details of the hybrid system ard the various types of
electron-vibron couplings. In particular one has to identify the vibrational modes (e.g bending
or stretching) of the nanoresonator which interact with the electrons. Here we adopt a general
formulation and assume that is a known parameter.

Collecting all terms the Hamiltonian of the open hybrid system is:

H=Han + Hr + Hieass; Han = How + Hnr + Hel w; (6.2.4)
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where the tunneling and the leads' Hamiltonians Hy and Hjeags are constructed as in the
previous sections.

The Anderson-Holstein Hamiltonian Hay can be solved exactly by performing the so called
Lang-Firsov (LF) unitary transformation:

Han = Ur Han ULe ; (6.2.5)

where we introduce ,
Ur = e Ns(@ a). (6.2.6)

P .
and Ng = ¢ ¢ is the total charge operator.
Note that the LF transformation acts both on the fermionic and bosonic operators of the
system which now become:

e =UcUfr=ce @ = =¢c?" (6.2.7)
and:
a= UIYF aUgfr = a+ jl\/l\sl (628)
To prove eq. (6.2.7) we use the anticommutation rules and the notabn 9 := = One
computes the derivative:
h i
@ g @) Ns a @ ;c e (@)

@o
eMs@ @) 3 @ [Pcicle Mola @)
= a @ eN@a)ce Mla)og 5 @ (6.2.9)

Then by integrating w.r.t  %and using the fact that & ( °=0) = ¢ one obtains Eq. (6.2.7). A
similar strategy helps to prove Eq. (6.2.8):

h i
% = oM@ @) g a & ae Ns(@a)
Kse Ms(@ @) a & :ale Ms(@ @) = N: (6.2.10)

The integration then leads to Eq. (6.2.8). As an alternative proof, e could use the Baker-
Campbell-Hausdor formula.

At this point it is important to notice that (see Eq. (6.2.8)) the tunne ling Hamiltonian Hy
os also a ected by the LF tranformation. Moreover, the matrix elements of e- and ¢ are not
diagonal anymore w.r.t the vibron number N . In turn, they contain the Franck-Condon factors
(see the Appendix for a derivation):

S
WNjNNG = e %

iN G N

|
N<! po% (6.2.11)

N, !
sgn(N® NN NILLT M=)
where o = P 2=~ ,L" are the generalized Laguerre polynomials and we introducetl« =

minfN;N %, N> = maxfN;N %.
Collecting all the terms one writes the transformed Hamiltonian of the open system as:

HIOI = HQW + HNR 2'\/}8:"! + Hleads + HT (6212)
= Hnyp *+ Hieads + HT (6.2.13)
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where the 3rd term represent an energy shift due to the LF tranformation applied to the
bosonic operators. Note that the Hubbard interaction term contains product operatorsc’ c
and is therefore not changed under the LF transformation. To caiclude the fully transformed
Hamiltonian Hpyp of the disconnected hybrid system is diagonal w.r.t the basi§ ;N ig, where
stands for one of the four electronic con gurationsfj Oi;j =";#i;] "#ig . Notably, the eigenener-
giesE.y can be written down explicitely, E.y = E +N~! , where for exampleE = 2=~ ,

Now, following the same steps as in Section 5.2 one nds that within theMarkov approxima-
tion the master equation for the reduced density operator (t) of a single-mode nanoresonator
interacting with a single-level electronic open system reads:

0= LMo O L el O L [ O (6.2.14)

with the following dissipative term due to the leads:
!

X
Lesl 1= = [A ;B () (ODY ]+ hc:

In this case (t) acts in Hilbert space of the hybrid system (therefore it can be expesses with
the help of its matrix elements in the basisfj ;N ig) and is obtained from the full statistical
operator by tracing out the leads' degrees of freedom.

The operatorsA;B and D are found by direct calculations:

X

A = T ono ;N ih &NG; (6.2.15)
N; ON©O
X _

B = f( +(N NOY~)T oyoy j;Nih ENT; (6.2.16)
N;  ONO
X

D = f( +(N NOY~1)Ty ogei;Nih ENY; (6.2.17)
ONO;;N

wheref (E) is the Fermi function of the lead  described by the chemical potential  and
temperature T . We also introduced the notationf (E)=1 f (E) and the jump operators
between pairs of fully interacting states © is the density of states of the lead ):
p
Tn. o= DV hNj&™j NG: (6.2.18)

We also included in the master equation the dissipation processes due a thermal reservoir
described by the Bose-Einstein distributionng and temperature Tepy .
Under the Lang-Firsov transformation the corresponding Lindblad term L reads as [55]:

2
L[ ®I=(ne +1)D [a] ()+ ngD [&] )+ - (2ng +1)D [Ns] (t);  (6.2.19)

where we introduced the notation:

D [X] ()= > X¥X + XIX 2XX Y : (6.2.20)
If ng 0 and ~! the dissipation acquires the form:
L[@®= 5 a’a + a’a 2aa’ : (6.2.21)

The time-dependent currents follow from the continuity equation of the charge occupation
Qs = eNs of the system (e denotes the electron charge):

%Qs(t): eTr Ms% (t) =J.(t) JIr(b): (6.2.22)
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The average number of vibrons is given by:
N (t)i :==Tr f (t)a’ag: (6.2.23)

The average displacement of the nanoresonator is given by:
r

hd(t)i := mTrf (t) @@+ag; (6.2.24)

with Mg being the mass of the NR.
The occupation of a givenN -vibron of the system is obtained by summing the populations of
the statesj ;N i over the electronic con gurations:

X
Pn()= hiNj ()j;Ni; (6.2.25)

where h;N j (t)j ;N i are the populations of a state with N vibrons and with the electron
con guration
Alternatively, summing over the number of vibrons we get the occumtion probabilities for
di erent electronic states: X
P(({)= h;Nj (O)j;Ni: (6.2.26)
N

Below we brie y discuss the main steps requires to solve numerically ta master equation for
the open NEMS. First one constructs the diagonal matrix elementsof the Hamiltonian Hpyp ,
as a result of the Lang-Firsov transformation (in particular, we add the energy shift 2=~1,
to the single-particle energy ). The LF matrix elements of the operator "are calculated in a
separate routine using special polynomials. This matrix is then usedd calculate the tunneling
coe cients in the dissipative Lindbladians Lieags. Let us not that this transformation does
not lead to a change of basis, we are still working with the eigenfundons fj ;N ig. This is
however a particular situation due to the simple single-site model forthe electronic system.
If more than one single-particle state is taken into account (say tle lowest-energy three levels
i; 1 = 1;2:3) the Lang-Firsov transformation, while still possibile, becomes cmplicated. In
this case one has to diagonaliza numerically the Hamiltonian of the hyhid system. As a result
some vibron-dressed states emerge which are written down as lineaombinations of free-basis
states. Then the tunneling matrix elements and the master equatio have to be written down
w.r.t the dressed-state basis.

The lead-sample couplings are calculated numerically assuming the tuglling processes are
spin-conserving. Using the Markov approximation the GME is numerially solved using the
Runge-Kutta 4th order method, the result being the full matrix h;N j (t)j *N%. In other
routines the commutators as well as the Fermi function used in theGME equation are com-
puted. The relevant observables (currents, displacement) areamputed using the density op-
erator obtained at each time step. The vibron average number andther populations are also
computed.

As the vibronic Hilbert space is in nite dimensional one has to truncate the number of Fock
statesjNi taken into account in the numerical code. Let us denote byN, the cut-o number
which means that the states used in the numerical simulations argN (N, 1), that is we
allow for N, 1 vibrons in the system (the vaccum statejN = 0i must be also counted). This
cut-o settles the size of the reduced density matrix to 4N,  4N,, where we take into account
the four possible electronicj i con gurations.

6.3 Numerical examples

Let us consider a single-mode nanoresonator of frequendy, in contact to a thermal reservoir,
that is with a collection of bosonic modes describing the external envonment. The second
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component of the hybrid system is a mesoscopic system coupled tawb particle reservoirs and
described by the Anderson-Holstein e ective Hamiltonian.

As a rst numerical calculation based on the master equation methal for nano-electromechanical
systems we shall study the simple dynamics imposed on the nanorasator by the dissipative
term L given in Eq.(6.2.21). In contact with the external bosonic modes tle nanoresonator
eventually reaches thermal equilibrium and thus its temperature eqals the temperature of the
environment Ten, . This thermalization process also means that itsN -vibron states jN i will be
occupied according to the Bose-Einstein distribution function coresponding to the tempera-
ture Teny. As we shall see below, the activation of the electron-vibron interations by electron
tunneling also induces a heating of the nanoresonator (that is, thenumber of vibrons and the
occupation of higher energy states increase).

To simulate the thermalization process in our hybrid system we rst solve the Lindblad
master equation in the absence of the leads (i.e. we take all coupling® particle reservoirs
V = 0) and we choose the initial state of the hybrid system asjQ = 0;N = 0i. Since the
sample remains empty the electron-vibron coupling is switched-o anl the states of the system
are still given by the set fj Q; Nig. In this case the dynamics of the system is controlled by
the dissipative processes related to the thermal reservoir. Onean actually check by direct
calculation that the equilibrium density operator:

eq = g e ~loga¥a=kg T (1 e ~! o=kg T) 1 (631)

solves the Lindblad equation, where s is given by the initial electronic con guration of the
hybrid system. This shows that in fact the system behaves like a damed harmonic oscillator.

As already stated, in the steady-state regime one expects thathte equilibrium occupation
probability of the N-th Fock state of the nanoresonator and the average vibron nurber are

iven b
g y x
Pod=e NToZkeT(q g ~o%keT), N = NPy : (6.3.2)
N =0

It is instructive to check that the numerical calculations based on the markovian master
equation Eq.(6.2.14) recover this exact result only if the one takesnto account a su ciently
large cut-o N, for the number of Fock statesjNi.

To this end we consider that the hybrid system does not support eletronic transport (that
it is NOT coupled to the leads) but its vibrational mode exchanges enegy with the thermal
reservoir (which can be considered a heat sink). Then the only dissaiive processes embodied
in the Lindblad term L in the master equation are due to the interaction of vibrons with the
environmental modes. The master equation is solved numerically byetting an initial state of
the hybrid system (unless otherwise stated the initial state is the \acuum' jO; N = 0i, that is
there are no electrons and no vibrons in the system).

For the dissipation constant we selected sevaral values, ranging from =0:05 eVto =

5 eV. The rest of the parameters are: - = 4 := ¢=0:5meV, =0:2meV,~!,=0:268meV,
and the mass of the nanoresonator isMo = 2:5 10 *° kg. Notice that the environment
temperature is the same as the leads temperature (i.d. = Tr = Tieads = Tenv). These

parameters are within the range of experimental values.

A natural question here is how to chooseN, in order to get correct numerical results, that
is, as close to the analytical formulae.Having in mind that the thermalization implies that the
average number of vibrons corresponds to the one associated the temperature Te,, of the
environment one should set the smallesiN, for which this condition is full lled.

Fig.6(a) con rms that the average number of vibrons hN (t)i calculated from the master
equation converges to the thermal average valu®l as one gradually increases the cut-o value
Ny. Reaching convergence w.r.tN, also implies that the population associated toN -vibron
states does not change signi cantly ifN, increases above a certain value abovl ; optimally,
Pn should apprachPg® in the steady-state regime. We see for example in Fig. 6(b) that the
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Figure 7: Convergence of the vibron number for di erent N,. The solid horizontal line cor-
responds to the vibron number corresponding to the environmenttemperature. Left panel
T = 50K, right panel T = 10K. The dissipation parameter =0:5 eV.

population Py=¢ does not change anymore if the cut-o increases abové, = 8; a similar
behavior is noticed for other populationsPy< . On the other hand, for higher energy states ac-
comodating vibron numbers closer toN, the convergence is not so good. Nonetheless, there are
two aspects which improve the numerical accuracy: i) the higher eergy states are less occupied
due to the N -dependent exponential factor, and ii) the damping/loss coe cient  prevents the
accumulation of vibrons in the system. Then a cut-o value N, for which convergence in the
above sense has been obtained su ces for describing the dynamicg the system.

We mention that convergence is observed at loweN, if the temperature is lower (T = 10K),
while if the temperature is higher (e.g. forT = 50K) then N, has to be much larger (see Fig.
7 where the convergence is far from being reached even fof, = 12 for T = 50K but almost
realized at T = 10K). This happens because as the temperaturel,, increases the number of
vibrons stored in the environmental modes increases as well. Readg this number requires
a lot of Fock statesjNi in the numerical solver of the master equation. It is also important
to observe that at very small temperature (e.g. T = 50mK) the average number of photons is
extremely low.

After this preliminary discussion on thermalization we turn to the tra nsport problem in
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Figure 8: (a) Vibron number. (b) Currents. (c) Population of the state with the highest vibron
number (here Py =13). (d) Plot of the populations. Other parameters: N, =14, =0:5 eV,
T=5K, | =15meV, r= 15meV.

a NEMS. We therefore solve the markovian master equation Eq.(6.24) in the presence of
the coupling to left and right particle reservoirs such that a current passes through the system.
Figs. 8 and 9 show the dynamics of the average vibron number, thegpulations of various states
as well as the currentsJ. and Jg for di erent cuto values N,.

Comparing the plots in Figs. 8(a) and 9(a) we notice that the vibron numbers obtained for
two cut-o values N, = 12 and N, = 14 are almost equal which means that the convergence
was obtained. Also, the populations of the states with the highest #owed vibron number (i.e.
N = Ny 1)is very small such that one can assume that a cut-o N, = 14 allows an accurate
description of the open system. One notices that in the stationaryregime the nanoresonator
accomodates around 2.25 vibron, distributed among several Focktates. The population of the
higer energy Fock states decreseas quite fast, as shown in Figdy( The two currents J_ and
Jr become equal in the stationary regime.

We adopt the following sign convention for the currents: J_ is positive it it ows from the
lead towards the sample (in agreement with Fig. 8(b)), whileJg is positive if it ows from the
sample to the leadR. The fact that the two currents behave di erently in the transien t regime is
due to the tunneling IN and OUT. As the coupling to the leads is suddenlyestablished, electrons
enter quickly from the left lead to the initially empty system, which exp lains the positive current
even at very small times. It one replaces the sudden switching funon  (t) = (t) (where

(t) is the step-function) J_ will smoothly increase from zero whent > 0. Note however that,
rigorously speaking, a time-dependent switching requires a non-migovian version of the master
equation. In contrast, tunneling to from the system to the right lead involves some charging of
the systems which is not so fast. As a consequencég(t =0) =0.

The di erence between Fig. 8 (a)-(d) and Fig. 9 (a)-(d) is that the maximum number of
vibron states (N, ) is smaller in the latter than for the former (that is N, = 14 and N, = 12).
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Figure 9: (a) Vibron number. (b) Currents. (c) Population of the state with the highest vibron
number (here Py=z11). (d) Time-dependent populations of the N vibron states Py . Other
parameters:N, =12, =0:5 eV, T =5K, | =1:5meV, g = 1l5meV.

Notice that the population of the state N = N, 1i gets smaller and can be neglected
when the cut-o N, increases. Therefore the e ective stationary temperature is cleer to the
environment e ective vibron number (corresponding to the environment temperature) if the
maximum number of vibron states is increased.

Now we discuss in some detail the vibron-assisted tunneling process. The starting point of
the analysis is Eq. (6.2.18) which gives the matrix elements of the crd®sn operator ¢/ after the
Lang-Firsov transformation (see the operator”in Eq. 6.2.18). The complicated structure of the
matrix elements N j"jN & shows that in the presence of electron-vibron coupling one electro
with spin  incident from the lead tunnels to the hybrid system evenwithout conserving the
vibron number. As a consequence the state of the latter changefsom the electronic 'empty’
N %vibron states jO;N% to a single-electron statej ;N i. Another important aspect is that
the vibron-assisted tunneling processes have di erent amplitudesvhich are essentially given by
di erent orders of the electron-vibron interaction strength

On the other hand, the tunelling coe cient T . oo appears in the master equation in
combination with the Fermi function f (E.n E ono). As the energies of the hybrid system
are known, one can compute the tunneling energy ¢.1(N;N9 = Exy E ono=~g+(N N9~
with the renormalized single-particle energy o = o ; It is now clear that the tunneling
process from the lead to the system is allowed only if | > ¢.1.

Now, let us discuss the energy di erences o.1(N; N 9 in terms of the dierence = N N°©
For tunneling-in processes one has> 0 if electrons have enough energy to excite more vibrons
while for < 0 the vibrations of the hybrid system are absorbed and allow tunnelig of electrons
from the leads at lower energies. The role of these transitions chaes in the case of tunneling-
out processes: the system is “heated' for< 0 and “cooled' down if > 0.

Figure 10(a) displays the tunneling energies as a function of and helps us to identify which
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Figure 10: a) Energy di erences corresponding to tunneling procsses from the empty system
(con guration with no electrons) to the lled system (con guratio n with one electron). The
di erences between the numbers of vibrons is = N N° b) Franck-Condon steps in the
current-voltage characteristics. Parameters: | = rR, Ny =12, =0:5 eV, T = 50mK,

VL;R =0:015meV.

transitions contribute to the current for a symmetric bias window set by . = E E o
p~'=2, wherep is an odd positive integer.

Multiple steps of the current are observed in the Fig. 10(b) as new tansport channels enter
the bias window (see Eqgs. (6.2.17)) which has the e ect of increasinthe current. Therefore
the di erential conductance will show peaks at each step. Notice hat the number of observed
steps is equal toN,=2 due to the symmetric bias (see Fig.10(a)). Indeed, foN, = 12 we see
in Fig. 10(b) six steps. Increasing the environment temperature mioothens the steps and in the
large temperature limit the Ohm's law is obtained.

In Fig.11(a) the average number of vibrons is plotted w.r.t time when the left chemical
potential does not allow the tunneling of an electron with the generdion of a vibron, that is
for | < n+ ~!'. On the other hand Fig.11(c) showshNi for a dierent value of | allows
the tunneling in the system of an electron and the generation of a vioon: | > v+ ~! . The
temperature here isT = 50mK. In this case the number of vibrons in the stationary regime is
larger than in the previous case. The occupation of the states argiven in Figs. 11(b) and (d).
Notice that the initial state (without vibrons) reaches the station ary regime at smaller value
when the left chemical potential is higher.

7 Current-induced magnetic switching in single-molecule
and arti cial nanomagnets

7.1 The systems and the motivation

Single-molecule magnets (SMMs) ( [57], [58]) are essentially describeg b giant e ective local-
ized spin and few orbitals which can be connected to contact probes andccomodate electrons.
More importantly, SMMs are promising candidates for solid state implementation of quantum
information protocols [59] The main features of a magnetic moleculer& its inner magnetic core
and the surrounding orbitals which serve to couple the molecule to sarce and drain probes.
Notably, a rather large magnetic anisotropy may a ect the transport properties of the nano-
magnet and leads to the formation of a magnetic barrier for spins (i.e the spin has to overcome
the energyDS?2, being D the anisotropy constant). Moreover, the magnetic anisotropy lits the
spin degeneracy even at zero eld.
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When some of the unoccupied orbitals are weakly coupled to leads thmolecule essentially
displays charging e ecs already known from quantum dot physics (i.eCoulomb blockade, se-
guential transport, negative di erential resistance). However, the spins tunneling through the
molecule interact via exhange coupling with the (large) spin of the later. This opens the way to
electrical swiching of molecular spins [60]. Transport through individial SMMs that are weakly
coupled to gold electrodes has been already reported [61,62], andem its Kondo features were
investigated [63]. Magnetic molecules usually have long spin coheren@nd relaxation times
which are of crucial importance for information processing. On thetheoretical side the study
of SMM was focused either on realistic simulations of the transport poperties of the molecule
(ab initio calculations - see e.g Renani et al. [64]) or on simpler (e ectivgé models in view of
understanding the complex spin physics of SMM [65{67].

7.2 Formalism

A single-molecule magnet carrying a large localized spif$ is described by the so called e ective
crystal eld (CF) Hamiltonian [57]:

DSZ+ E(S2 &)+ g eBSs; (7.2.1)
where D and E denote the easy-axis and transverse anisotropy coe cients andS; are the
components of the spin operator associated to the molecular magt In particular, the z-
component has eigenvalue§, with quantum numbers S; = S;::; S such that észzi = S;jS;i.
Note that the 2nd term induces spin tunneling processes, as can bseen from the identity

§2 S2=(82+82)=2. Here§ =5, S are the jump operators. By simple calculations

Her =
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one nds that 82 increase/decrease the molecular spin by 2 ( denotes the Kronecker symbol):

hS,jS2 Sy
hs,j52 S0

p p
(S SH(S+SP+D) (S S, D(S+5+2) s 042
P
(S+SN(S SP+1) (S+S7 D)(S S0+2) s,sp 20 (72.2)

The last term in Eq. (7.2.1) describes the Zeeman energy correspdimg to a constant magnetic
eld applied along the z-axis The values ofE and D depend on the SMM. For example, in [57]

one nds that the Feg molecule hasS =10, D = 0:295%K = 0:0254 meV andE=D = 0:18

(so E is not really much smaller that D). It is safe to considerD in the range of few tens of
ev.

One should have in mind that, besides their localized spin, molecular magets also have
electronic orbitals which can be coupled to contacts and thereforegarticipate to transport.
For example, the lowest unoccupied molecular orbital (LUMO) with energy =~ accomodate
electronic spins =";# which tunnel from the source contact. We introduce the correspnding
creation/annihilation operators ¢=c for electrons. The electronic part of the Hamiltonian
then reads: X
He = dc +UANs+ g gBY;; (7.2.3)

where &) is the z-component of the electronic spin operator. Also,n® = ¢¥c is the number
operator for electronic spin , J and U is the Coulomb repulsion parameter.

Finally, we include the exchange interactionJ& $ between the electronic and localized spins,
with J being the interaction strength such that the total Hamiltonian of t he molecule becomes:

Hu Qor + Her I8 8

= dc +UNNy DSZ+E(SE &) I8 S+geBS); (7.24)

where we introduced the projection of the total spin (i.e electronicand molecular) é; = §, +%,.
It is easy to observe that the exchange interaction between the lectronic spin and the

localized spin of the SMM can be written ass 8§=x,8+ % 8 &, +4,S  and the electronic
spin operators are given in terms of the creation and annihilation opgeators:

1

8, = > cey  cio (7.2.5)

and:

8§ =co; & =y (7.2.6)

From these equations it follows that the exchange interaction leadso simultaneous spin- ip
processes. For example, the terns 28, describes the reversal of the electronic spin from ="
to =# and the increase of the molecular spin by one. In this process the tal spin m is
conserved.

For J = E =0 the system is completely described by three quantum numbers Q;s;; S, g,
whereQ = f0;1;2g is the total electronic occupation number, that is the set of eigenalues of
O=-¢ n . In fact, the basis of Hy (J = 0;E = 0) is made of statesfj Q;s;; S;ig. More
precisely, one hasfj 0;0; S;ig, fj1; 1=2;S;ig and fj 2;0;S;ig. Now, if J 6 0 one can check
that [Hy (J;E =0);Q] = [Hwm (J;E =0);8!] = 0 such that Q and &! are still good quantum
numbers. The eigenstates oy (J; E = 0) are then described by the electronic occupation and
by the total spin quantum number m. We introduce the "empty’ statesfj Q = 0;S;ig and the
“charged' molecular statesfj Q = 1; mi g. The latter states can be calculated analitically.
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Since for the empty statess*.;jO;mi = 0 one hasjO;mi = j0;S;i. The corresponding

eigenvalue of the “empty' molecular statejO;mi is simply Egyy = Dm?+ g gBm. For
m2 [ S+1=2;S 1=2] the single-particle states Q = 1) are given by (note that we use the
shorthand notation jQ = 1; ;S ;i := j;S ;i while keeping in mind that in this case m takes

only half-integer values if S in integer or integer values forS half-integer):
jLmi = A Lj#Em+1=2i+ A" m 1=2i; (7.2.7)

and their associated eigenvaluek .., read as:
J . 1
Eim = +08Bm+ 7 D m’+ 2 E(m); (7.2.8)

where E(m)=[D(D J)m?+(J=4)?(2S+1)2]**2. For simplicity we introduced the notation

« = 4= . The coecients A, in Eq (7.2.7) are known Clebsh-Gordon coe cients but
can be also calculated numerically when diagonalizing the molecular Hamittnian w.r.t. the
basisfQ; ;S ;9. The remaining Q = 1 states arejl; S 1=2i andj1;S +1=2i; since the total
molecular spin takes the extreme values we shall call these state Ify polarized. For vanishing
magnetic eld, B =0, the states associated to m are degenerate and one has

Eyn(B=0) = E; o(B=0); (7.2.9)
Eom(B=0) = Eo m(B=0): (7.2.10)

For integer S the transverse anisotropy induces a strong mixing of degeneratempty molec-
ular states j0; S;i. In particular, at vanishing magnetic elds one nds that the lowest energy
states are mostly made by symmetric and antisymmetric combinatiors ofj Si states. Note
that for suitable values of the magnetic eld g gB, = D(m + m9 the degeneracy condition
becomesEo.m (B) = Eomo(B) and the mixing involves di erent pairs fm; m%, with m > 0 and
mO< 0 (that is, for molecular spins on di erent sides of the magnetic barier DS?).
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Figure 12: The energy spectrum of anS = 5 molecule as a function of the majoritary spin
guantum number m (see the text for further discussion on this point). The lowest inveted
parabola ( lled circles) correspond to empty molecular states wheeas the energies of the single-
charged stateg1; mi lie on the middle ( lled triangles) and highest parabola (empty triangles).
The LUMO has the energy = 1:75 meV. Other parameters:J = 0:1 meV D = 0:056 meV,
E=D =1=50,B =0:1T.

Let us illustrate the above results by computing the energy spectum of the Fe, molecule
which is known to be described by a localized spirs = 5. In the presence of the exchange cou-
pling J one should get Z+1 = 11 empty molecular states j0; S;i, two sets of 25 charged states
jQ=1;mi (with m= 9=2; 7=2::; 1=2)and two fully polarized statesjQ =1; 11=2i. It
is useful to represent the spectrum as a function of total quantm number m.
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Fig.12 shows that the eigenvalues of the nanomagnet are arrangenh three inverted parabo-
las, a feature due to the anisotropy termDS? which is present in all eigenvalues. The spectrum
is calculated numerically by diagonalizing the Hamiltonian. The two parabolas associated to
the charged states are pushed to higher energies by the single4piale spin-independent term
in the Hamiltonian. The degeneracy of the pairsEo, m and E;. ., is sligthly lifted by a small
perpendicular magnetic elsB = 0:1T. We do not represent the doublely occupied state€) = 2
as they will no participate to transport. This condition can be achieved by choosing the bias
such that the double occupancy of the molecular orbital is forbiddel due to the strong Coulomb
interaction U.

The e ect of the transverse anisotropy is negligible in Fig.12 as we dected E=D = 1=50
and the magnetif eld lifts the degeneracy of the states with S, = 2 (the condition which
is present in the transverse anisotropy termE (82 + $2)=2 from the total Hamiltonian). In
the general case bothl and E are non-zero and analytical results are no longer available. In
particular m is no longer a good quantum number.

Let us denote the eigenstates oHy (J;E) by j . i and their corresponding energies by
Eq; , where is an integer number which counts the number of available states withelectronic
occupation Q. More precisely one has:

Hu(JE) o 1= Eq | o I (7.2.11)

andj q. i can be generally expressed as linear combinations of 'free’ state$ldy (J =0;E =
0):

joli = A(SZ)jO; 0; S;i; =1;2;:;2S+1 (7.2.12)
o XX .
jio= B's i1 ;S.i; =1;2;:;2(25+1): (7.2.13)
S,
In the last equation it is understood that the spin orientations  =";# correspond to the
quantum numberss, = 1=2. The 'delocalization’ of the molecular spin of a statej o, i over

more componentsjS;i with the same parity is controlled by the coe cients A‘SZ) and Bf;z ?sz in
Egs. (7.2.12) and (7.2.13). Note that for the single-particle state§ ;. i this delocalization is
due to both the exchange couplingd and the transverse anisotropy term. Nonetheless, the states
iQ;s;; S,i contributing to each j o. i are described by the same charge occupatio®. This is

why the coe cient A(Sz) and B(;S)Z do not depend onQ. Now, if the magnetic eld is chosen away
from the degeneracy pointsB = D (S, + S9)=g g of the energies associated to the pair of states
jS,i and jS%i which obey the conditionjS, SYj =2, one can still identify a single majoritary
spin componentS, such that jA(SZ)j2 A (Sg)j2 for all the remaining projections S? 6 S,. A
similar argument holds for pairs of single-charged state$ 1. i, the di erence in this case being
that the dominant component m refers to one of the eigenvaluesn the total spin quantum
number S, such that one hasjBr(n)j2 B r(ngjz for any m 6 m® These majoritary components
are found from the exact diagonalization and allow us to switch to themore intuitive notation

j o i'j omi;weshallalso use the correspondendgy. ! Eq.m . If the molecular spin S is
an integer the empty/charged molecular states are described by ieger/half-integer dominant
guantum numbers. In this sense, the total spin quantum numberm from Fig.12 stands for the
dominant component.

7.3 Numerical results

The transport properties of single-molecule magnets described by, have been extensively
studied (see e.g [59,61] for experimental measurements and [6B]&or theoretical investiga-
tions). The Hamiltonian of the system assumes again a partitioning fom:

H = Hm + Hieads + HT; (7.3.1)
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where Higags iS the Hamiltonian of the particle reservoirs (leads) to which the moleale is
connected andH+ decribes the tunneling of electrons with spin from a state with momentum
g on the lead to the molecular orbital:
X x £
Hr(t) = dg (t)(V dcg + ho): (7.3.2)
=LR 0

The parameter V is the hopping amplitude between the orbital level with energy  and
the electronic spin states in the lead . Note that we assumed for simplicity spin-conserving
tunneling processes, that is the electron does not ip its spin when tinneling between the
molecule and the particle reservoirs. A tight-binding representation of the leads leads to a
simple expression for energy of the incident electron, that is'q = 2t cosq (with t. being the
hopping constant on the leads). For simplicity we consider that the oupling to the leads is
established at the instantt = 0 and that g (t) = (t), where (x) is the step function.

The spin polarizations of the leads is dened as®P = (N, N )=(N, + N ), where N,
and N are density of states for the majority and minority spin in the lead

Let us use this notation to introduce some relevant spin-polarized on gurations of the
leads. A non-magnetic lead is described by equal spin densities, that itN. = N, from where
it follows that P = 0. On the other hand, for fully -polarized leads one ha?®\— = 0, where —
denotes the opposite spin polarization. For example iN, = 0 the lead carries only spin-up
electrons and one ha$® = 1. Partially-polarized leads are de ned similarly by P 2 (0;1).

The role of spin-polarization on the leads is revealed by analysing theunneling-in and -
out processes involving the states of the central system. Let usrite the matrix elements of
the creation operator & w.r.t to the basis of Hy . The non-vanishing elements couple empty
molecular states to single-charged states:

v X SO 0
Xmmo:=h 1:mjdj omol = Bis,Ag,); (7.3.3)
S,

where the 2nd identity follows from the fact that the tunneling Hamilt onian couples only molec-
ular states with the same quantum numberS,. From Eq. (7.3.3) one observes that due to mixing
e ects of the exchange coupling and transverse anisotropy theunneling-in matrix elements X
has a complicated structure. First, it contains both diagonal and o-diagonal terms. Secondly,
it couples in general an empty molecular state with dominant quantumnumber m®to charged
states with lower and higher molecular spinm. To see this more clearly let us consider without
loss of generality that the nanomagnet carries an integer moleculaspin S. This means that
for the empty molecular states the spin numberm = S, assumes integer vales while for the
charged statesm = S 1=2;::S+1=2. Now select an empty molecular stat§0; mi with some
intermediate quantum number S <m = S, <S and inpect the non-vanishig matrix elements
hl; mY¢’jO; mi. From Eq.(7.2.7) it follows that hl; m + 1=2jc’jO; mi selects the spin-up co-
ecient A ., _,. while hlm 1=2jc%j0; mi pick us the spin-down componentA = ;... In
other words, the nanomagnet performs transitions to states wih higher or lower total molecular
guantum numbersjm 1=2i . From the energy point of view (see Fig. 12) the spin-dependent
electron tunneling processes induce transitions from the energio., to the 'neighbor' energies
El;m 1=2"
Using the same gure it is not di cult to check that from the leftmost empty molecular
state jO; 5i one eventually reaches, by succesive tunneling in and out processehe rightmost
state j1;11=2i. This complicated process is calleccurrent-induced magnetic switching(CIMS).
In view of such a complete reversal of the molecular from S! S the transitons m! m+1=2
will be called forward since they contribute to the spin reversal. In contrast, the transitions
m! m 1=2 compete with the complete spin reversal and will be calledackward
In Fig. 13 we collect some numerical results for the Fg molecule connected to spin-polarized
leads. The markovian master equation was solved numerically w.r.t thénteracting basisf o.mg
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Figure 13: (a) The time-dependent outputcurrent Jg for di erent degrees of spin-down polar-
ization of the drain lead. (b) The occupations of spin-up and spin-devn states. (c) The total
spin averagehSti. One notices the complete spin reversal for = 0. (d) The total population
of the statesj1;11=2i andj1;11=2i".

of the nanomagnet. The initial density matrix (t = 0) corresponds to the lowest energy empty
molecular statej0; 5i. The left lead is spin-up polarized, that isNt = 0. This choice ensures
that the leftmost charged state j1; 11=2i cannot be populated and that the full spin reversal
is possible. On the other hand, the right lead is mostly spin-down polaized. It is useful to
introduce the ratio = NX=NR. Then = 0 corresponds to fully spin-polarized lead. The
numerical simulations were performed for =0;0:1;0:25 and =0:5.

By comparing Figs. 13 (a) and (c) one notices that the magnetic swithing can be read from
the transient current if the leads are magnetic. Clearly, for the arti-parallel con guration =0
the steady state current vanishes because the orbital is spin-upolarized from the left lead
and the drain lead allows only spin-down tunneling. Moreoveor, the fll magnetic switching
coincides with the onset of the steady-state. Also, by measuringte transient current one can
extract the time needed for the system to experiencall intermediate molecular state between
j0; Si andjO; Si.

In contrast, for non-magnetic electrodes we nd that the evolution of the total spin S!
cannot be traced back from the transient current. The onset ofa steady state transport regime
implies neither that all projections of the total spin S! have been spanned nor that the spin
reversal is accomplished.

8 The non-equilibrium Green's function formalism
The non-equilibrium Green's function formalism (NEGF) or the Keldysh formalism goes back

to Schwinger [72] and Keldysh [73], with important contributions from Kadano and Baym [74],
Fujita [75] and Craig [76]. To our best knowledge a review on NEGF has ot been available
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until ‘84 [77]. The method provides a perturbative machinery which allows the calculation of
various correlation functions for an interacting system submittedto a perturbation which does
not allow the return to the ground state. As such, it surpasses tte equilibrium diagrammatic
approaches based on causal or Matsubara Green's functions.

To our best knowledge, the rst application of the Keldysh formalism to a transport problem
has been presented in a series of papers by Caroli et al. [15,78{80hterestingly, the partitioning
transport setting was also coined in these works. Later on Meir andWingreen [81] proposed
a closed formula for the steady-state current across afinteracting region. The method was
extended to the transient regime by Jauho, Meir and Wingreen [82]. Mwadays there are a lot
of texbooks on non-equilibrium Green's function (see for example cksical book by Haug and
Jauho [7] and the recent work by Stefanucci and van Leuwen [8]).

8.1 The contour-ordered formalism
Let us consider a system which is decribed by the rather general Hailtonian:
H(t) = HO + \/int + Hext (t) = K + Hext (t), (8.1.1)

where Hq represents the single-particle contribution (i.e. it contains only simge products
of creation and annihilation operators like vy .n o od? dno o, where vy .n o o describdes some
coupling constants), Viy; is a two-body operator (e.g the Coulomb interaction written in the
second quantization) andH ¢ (t) is a time-dependent perturbation which drives the system out
of equilibrium. Here d¥, is the creation operator associated to a single particle wavefunctio
of the 'non-interacting' part Ho. As we have already seen in the previous sections] ey (t) could
be a bias applied on the system (leading to the Kubo formula in the linearesponse regime)
or the lead-sample coupling in the master equation approach. For fither use we denote by
K the Hamiltonian of the unperturbed system, that is without the ext ernal potential. Note
that in general K is a complicated object and its many-body eigenfunctions cannot bebtained
analitically (the very few exceptions will be discussed in the next segbns).

Again, the statistical average of a given observablehO(t)i can only be calculated if one
knows the density operator of the system:

hO(t)i =Trf (t)Og=Tr fU(t;to) (to)UY(t;to)Og=Trf (to)On (t)g; (8.1.2)

where (to) is the density matrix of to the interacting but unperturbedsystem andU(t;ty) is the
unitary evolution associated toH (t). To get to the last identity we used the cyclicity property of
the trace and the usual de nition of the Heisenberg picture operdor Oy (t) = UY(t;to)OU(t; to).

At this point is is useful to relate the Heisenberg and interaction pictures of the operator
O, that is:

On (1) = UY(tto) Uo(tto)Ud(tito) O Uo(tito)Ud(tito) U(tto) = SY(tto)O(t)S(t; to);
(8.1.3)
where we introduced the interaction picture operator O(t) = UJ(t;to)OUo(t; to) and the S-
matrix operator:
S(t;to) == U (L to)U(t;to): (8.1.4)
Note that Ug(t;tg) = e '(t 1K=~ s the unitary operator of the unperturbed system. It is
straightforward to check that S(t;tg) is related to the interaction picture of the time-dependent

perturbation. Its derivative can be manipulated as follows:
|

Y(t- i '
i~%8(t;to) 7duoétt’t°)ua;to)+ ug(t;to)du((;to)
= U(tto) (H(t) K (1) U(tito) = Ug(t to)Hew (1) Uo(t; to) U3 (t; to) U (t; to)
= Hex (DS(t1o): (8.1.5)
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Figure 14: Left: The contour C (see the text for more details). Right: The same contour with
two times ; © each lying on di erent branches of the contour. Note that the choice corresponds
to > Owhilet®>t.

Then S(t;tp) can be written as a formal series:

(= © 4
S(t;to) = ni dtp:dty T |qext(tl):::ﬁext(tn) =T exp . ds#iext(s) ;
n=0 ’ to to
(8.1.6)
where T is the time-ordering operator
_ AMBMY if t>t
TAOBMN=  ‘gioar) if t<to
(8.1.7)

In the above equation the lower/upper sign refers to the case whe A and B are fermion/boson
operators. Note that with this de nition the latter times are always pushed to the left. We shall
also need the so-called antitime-ordering operatoT which orders operators with increasing time
arguments from left to right. Then the SY operator appearing in Eq. (8.1.3) reads as follows:
. Z VAR
S(t)=T exp ~  dsfe(s) =T exp —  dsHea(s) (8.1.8)
to t
which, together with Egs. 8.1.6 and (8.1.3) lead to a compact yet verygeneral expression of the
statistical average
VAN . Z
. = i [
hO(t)i =Tr  (to)T exp - dsHex(s) OMT exp =  dsHlea(s) : (8.1.9)
t to

Equation (8.1.9) deserves several comments:

i) It contains only the time-dependent perturbation Hey and the initial density matrix  (to).

i) In the non-interacting case (that is when Vi = 0) the initial density matrix  (to) is
known; in particular, in equilibrium and at zero temeperature (T =0) ¢ is simply the ground
state ¢ of the system.

iii) The two exponentials on both sides of O(t) lead to a double book-keeping of the time
arguments. Of course, it would have been preferable to have ALL perators Hex to the left, as
in the standard equilibrium many-body perturbation theory.

iv) Looking at the two time—in'tegrals one notices that on the RHS t runs on the 'forward' or

‘chronological branch', that is on C = [tp;t] while the left hand side contains the 'background'
or 'almti-chronological branch' C =[t;tp]. This structure suggests us to introduce the contour

C = C [ C which runs from to to ty, (tm = max(t;t%9) and back through both t and t° only
once (see Figs. 14. Also, we introduce the so called contour-ordeg operator:

8
<

. C 9
TeaOs( =, AOBCY T

B(9A() if < O :
(8.1.10)
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" . c . .
In the above de nition the notation > 9 simply says that lies further along the contour
than © Note that if f; 9% lie on the same branch the contour-ordering operator is nothing

but the chronological product (on C) and the anti-chronological one onC.

Now, going back to Eq.(8.1.9) it is clear that the corresponding conbur looks like the one
in Fig. 14, with ty, = t, since in this caset is the largest time. Then, we carefully replaced
the ordering operatorsT and T by contour-ordering operators on suitable branches and safely
move all operators under the common contour-ordering operato

. Z . Z

hO)i =Tr  (to)Tc exp  ~  dsfea(s) exp —, dsfea(s) O) : (8.1.11)
C C

In fact, one can show (see [7] for the technical details) that the ldisenberg observable can
be expressed in terms of the time integrals on the whole countou€, namely:

. Z
hO(t)i =Tr  (to)Tc exp ': dsPex(s) O@t) (8.1.12)
C

Equation (8.1.12) represents a preliminary yet important result towards the construction
of the non-equilibrium Green's function formalism. It expresses thestatistical average of the
Heisenberg operators as a contour-ordered expansion in termd anteraction picture of the
perturbation Hex . Now let us recall the de nition of the real-time causal Green's fundion:

D h iE
Gma ot = 0 T dnwm (O o (1Y (8.1.13)

where dn .4 () is the Heisenberg picture of the annihilation operator associatedd a single-
particle state . The statistical average in Eq.(8.1.13) is performed w.r.t the initial density
matrix (to), that is:

. Trf (to) g,
'Y I (to)g

For simplicity we shall henceforth introduce the simpli ed notations dn.y (t) ! dy (t) and
Gman oft;t9) ! G(t;19. It should be also stressed that similar but more general de nitiors of
the Green's functions can be written in terms of the eld operators. However, in the transport
problem we are considering here the Hamiltonians are given in terms afreation/annihilation
operators, such that the use of eld operators is not required.

Let us rewrite the real-time (causal) Green's function in terms of interaction picture oper-
ators using the previous results. First we observe that the chronlogical product in Eq.(8.1.7)
can be written in the alternative form:

h (8.1.14)

TAOBY) = @ tHADBEY) (t° t)B{YHA(L): (8.1.15)

where we used the Heaviside-function. Next, replace the two Heisenberg operators inG(t;t°)
using Eqg.(8.1.3:

h [

T dn (D, (19

(t t9SY(tto)dAt)S(t;to)SY (1% to) @ (19S(t% to)

(% 1)SY(t%to) ¥ (19S(t% to) Y (t; to)d(t) S(t; to)

(t t99(tto)d(t)S(t tYP (1)S(t% to)

(10 ) (t%to) @ (t)S(t® t)A(t)S(t; to); (8.1.16)

where we used the usual properties of th&-matrix SY(t%tg) = S(to;t% and SY(t;to)S(to;t9 =
S(t;t9. One can actually use the fact that under the time-ordering opeator the S-matrix
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(which contains an even number of fermionic operators) commutesvith the creation/annihila-
tion operators to write Eq. (8.1.16) in a more compact form:

D h iE
iG(tY) = S(toitm) T S(tm:to)d)Y ; (8.1.17)
wheret,, = max(t;t%. Furthermore, by inserting S(tm;1 )S(1 ;tn) =1 we get:
D h iE
iIG(ttY = S(te;+1)T S(+1 ;to)d)ydy (8.1.18)
Using Egs. (8.1.6), 8.1.17, 8.1.18 we obtain:
D_h g, i h R a iE
iG(tt)= T e= w7 o=  HEd 4y dy (0 (8.1.19)
By comparing Egs. (8.1.19), (8.1.11) and (8.1.12) we introduce the th two-time contour-ordered
Green's function: D h iE
Ge(ttY)= i Tc da (), (1Y (8.1.20)

with ; 92 C. Using the properties of theS matrix and of the contour-ordering operator one

can show that this new Green function can be also expressed in tersnof the contour-ordered

interaction picture operators. Since the calculation is a bit tediuos ve simple state the results:
D h g iE

Ge(; 9= i Te et cWlorHadd g )@ 9 (8.1.21)

Depending on the location of the two times ; °on the contour we obtain the four Green
functions, know from equilibrium theory:

|
1. 1f t;t92 C then

D h iE
Ge(tt) = GT(tt)= i T du(t)d(t9
= it Oy O)d, O 0 (t° O, (t9da (b)i: (8.1.22)
|
2. 1ft2 C andt®°2 C we recover the so called IIDesser GreenEfunction:
Ge (5t =G (5t9= i o, (Odu(t) : (8.1.23)
|
3.1ft2 C andt°2 C one gets the greater Green function,
D E
Ge (5tY= G (1Y = i dy(t)d, (9 : (8.1.24)
4. 1f ;192 C then
_ D h iE
Ge (5t)=GT (9= i T da (O, (1% = i (t° Ohdy (O, (1O i (¢t thd, (t9dy (b)i;
(8.1.25)

where T is the anti-chronological time ordering.

The retarded and advanced Green's functions can be also expressin terms of the lesser
and greater components:

h

|
GA(t; 19 i (t° 1) du(t)d (9 = (% 1) G(ttY+ G (;t9 ;(8.1.26)

h i
GR(t;t9 it 9 da (O, (19 = (t t9 &(tY G (t;tY ;(8.1.27)
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where the are for commutator (bosons) and anti-commutator (fermions).

Other useful relations are:

GT+GT = G°+G”; (8.1.28)
Gr = G +G"=G"+GR; (8.1.29)
GT = G GR=G° G*; (8.1.30)

which means that the 4 Green functions are not linear independent. Note that the lesser
one-particle Green function gives the local particle number densitywhile iG> gives the single-
particle correlation function.

If one carefully follows the development of the many-body perturtative approachesthe only
‘raison d'etre' of the Keldysh contour is unravelled: it provides a ystematic and convenient
manner to order time arguments of complicated products of interation picture operators on
the chronological (from ty to t) and antichronological (from t to tg) time branches. These
products appear naturally in the statistical average of a given obsrvable in the non-equilibrium
regime. Moreover, by introducing contour-ordered GFs one get® compact form amenable to
a diagrammatic analysis via the Wick theorem. To sum up, the Keldysh ontour helps one to
reveal the formal resemblance between the equilibrium many-bodyperturbation theory and the
non-equilibrium one.

Formally, this means that one can write down a contour-ordered egivalent of the Dyson
equation Z Z

Ge(; 9= Cdl CdeOC(; 1) (15 2)6Gc( 2 9 (8.1.31)
whereG2 (; 1) is the contour-ordered of an unperturbed 'free’ Green's funcion (typically these
‘free’ Green's functions are derived from a single-particle Hamiltonia) and is the so called
irreducible self-energy which embodies the e ect of a perturbationand in most cases must be
calculated perturbatively.

In practical calculations one has to carefully count the various types of Green's function
(retarded, advanced, lesser or greater). The so called Langretrules [84] express such contour
integrals with convoluted Green's function in terms of real-time integrals. Suppose we have
three contour-ordered quantities A; B an(ZJI C obeying the identity:

C(; 9= ) diA(; 1)B( 1 9 (8.1.32)

|
Now, by xing  on the upper part of the contour C and °on the lower oneC(; ©° becomes
the lesser GFG= (t;t9. On the other hand, i runs over the entire contour and one has:
z

c(tt9) = d1A®t 1)B( 1;t9
ZCl z 1
= dt;A(t;t1)B (t1;t9 + dts A(t;t1)B (t1;t9 (8.1.33)
le 1
= dty [A(tt1)B(t1;t)  A(tt)B(t1;t9] (8.1.34)
1
Zy h i
= dty AT(;t1)B=(t1;t9) AS(t;t)BT(t1;t9 (8.1.35)
1
Substituting AT = A< + AR andBT = B< B” we nd (in matrix notation):
Cc< = ARB< + A<B#; (8.1.36)
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which is one of the simplest Langreth rules.
Let us mention another useful Langreth rule which allows us to writedown the retarded (or
advanced) components of the contour-ordered quantities:

Z
CRt;tY = dt;AR(t;t1)BR(t1;tY: (8.1.37)

There are two crucial consequences of the Langreth rules, naryethe Dyson equation for the

retarded/advanced GF and the so-called Keldysh equation for thelesser GF:

GA;R — GO;A;R + GO;A;R AR GA;R . (8138)
G* 1+GR R g™ 1+ AGh +GR “GM: (8.1.39)

For the rather technical proofs we refer to the existing monogrghs (see Refs. [8] and [7]).

Both the GME and non-equilibrium Green's function formalism (NEGF) r ely on the parti-
tioning approach and allow for many-body interaction in the central system, while the leads are
assumed to be non-interacting (this assumption leads in particular b the Fermi distribution of
the particle reservoirs). There is however a crucial di erence beween the two methods. The
perturbative expansion of the dissipative kernel forces restrict the master equation approach to
weak lead-sample tunnelings while the interaction e ects are accoued for exactly. In contrast,
the Keldysh formalism is not limited to small system-reservoir coupling but the Coulomb ef-
fects have to be calculated from appropriate interaction self-engyies. Which method ts better
is simply decided by the particular problem at hand.

8.2 Non-equilibrium Green's functions and transport

In this section we use the non-equilibrium Green's function techniqueto study the transport
through an open interacting system. The main result is the so calledhie Jauho-Meir-Wingreen
formula for the electronic current [82].

Our system is described by the rather general Hamiltonian:

H=Hg+Hry =Hg+ H_+ Hr+ Ht; (821)
where Hs describes an interacting central system whileH .r are single-particle Hamiltonians
of non-interacting leads: X

Hi = k Gy Gl ; (8.2.2)

k;

written in terms of creation and annihilation operators associated b a single-particle state
of an eIect,spn with spin  and momentum k. The current in the lead | is de ned as usual
(Ni=Lr = G &I )

dN ie .

= e — = —HN;;HJi; (8.2.3)

dt ~
SinceHr~ is the only operator which does not commute with the number operadr one has to
compute the commutator [N; Ht]. This can be done by using the identity:

[AB;CD] = [AB;C]D + C[AB;D]= [C;AB]ID C[D;AB]=
= f C;AgBD + AfC;BgD CfD;AgB + CAfD;Bg: (8.2.4)
Thus the current reads:
ie X h D E i
()= — Vicn  C dn (1) hict (8.2.5)
kn
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where we can identify the lesser and greater Green functions deed by:

D E
G:;m tt% ) = o (% dn (1) ;
G (5t% ) = i df (Yaq (1) : (8.2.6)
The current is then: eX h [
() = = Vkin  Ghy (615 )+ hic: (8.2.7)
kn
Using that: L
hAI = PAYi; (8.2.8)
we obtain:
Ghu (6t; )= Gy, (tt; ) (8.2.9)
and therefore the current has the form:
2 3
2e X <
i(t)= =Re4 Vi Gpy (Bt: )D: (8.2.10)
k;:n
In the steady state we expect to check the identityl = 1. = IRr.

We calculate the current J|. through the left wire by rewriting the lesser Green function as
follows:

G (5 %)

h;(rc%n (e (9

1
=z Gom (5 13 MVigm Gl (13 % ) (8.2.11)
m C

A proof of this "decoupling” formula can be found in [7] but we shall nat enter these technical
details here. It su ces to notice that while in the right hand side of Eq . (8.2.11) the indices of
the Green function belong to di erent subsystem (i.e n is a sigle particle state of the central
system andkL corresponds to a an electron having momentunk on the leadL) the left hand

side contains Green's functions 'localized' on each subsystem. Hef@?, is the non-interacting

Greens function of the leadsL:

Ge (13 % )= ihTcac (e ( Yio; (8.2.12)

where the statistical average is performed with the equilibrium noninteracting density matrix
of the leads. On the other hand, a sum overll states m in the central system is generated
when applying the Wick theorem.

Another important feature of Eq. (8.2.11) is that it involves contou r-ordered quantities such
that the Langreth rules are needed to switch to usual time integrds. By using the Langreth
rule Eg. (8.1.36) in Eq. (8.2.11) one nds:

1X Z1
G (6% )= = dti Giy (Gta; )GR (15t )+ Ghp (Btas )GRE (15t ) Viem
m 1
(8.2.13)

At this step we assumehat in the steady-state regime the Green functions depend only o

time di erences such one has:

z
1 X =1
G (0 t% )= = dty GRL(t t1; )G (t1 % )+
- 1
m
+ G (t t; )Gt t% ) Vieem (8.2.14)
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Next we use the notations:

t t9 = %
t tg = t%°
t, t9 = (8.2.15)
which then leads to:
1X 21
Gua W)= 2 d Gu(® )G ) G (1 )GLC ) Veum
m
By using the convolution theorem for Fourier transforms:
< 00 1le it % R . 0< (| - < . 0A (] -
Gn;kL (t ' ): F N € d! Gnm (! ’ )GkL (! ' )+ Gnm (! ’ )GkL (! ' ) VkL;m
m
If we now take t = t®as required by the expression of the current]; it follows that:
z
1 X 7t
Ghy (Bt )= 5= . dl GRL (1 )G (s )+ G (15 GRS ) Ve
m
The stationary current then reads:
2 3
e?2 ‘1 X R 0< < 0A
L= — Re4 Vicitm: Vkum G (15 )G (V5 )+ G (U5 )G (s ) S:
1 k;;n;m
(8.2.16)
The Green functions are obtained by direct calculation:
. 1
Gi'(h ) = — = (8.2.17)
Gu (5 ) = 2if (1) ' X (8.2.18)
These expressions are derived here.
Using eq. (8.2.9) it can be shown that:
Grn (') = Gim(': )
Gon (15 ) = Gim (' ) (8.2.19)
We de ne:
L 2 X kL
mn (1) = — VkL;m VicLin ! - (8.2.20)
k
and therefore the integrand in eq. (8.2.16) is:
2 3
X
Re4 Vican:  Viem  Grm (15 )GR (15 )+ Gom (15 )GRE(E; ) O =
k; ;m;m
1 X R 0< < RO0A A ~0< < ~OR _—
> Vi Vktm Gam Gkl + Gam Gl Vkun Vkum G Gl + G Gir =
nm;k
1 X R ~0< < RO0A A ~0< < ~OR _
> Vicn Vkum  Gam Gl + Gam Gkl Gim Gl Gam Gie =
n;m;k;
1 X
5 Vetn Viw Gl Gy G +Gi, G% GX
n;m:k;
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where we exchanged then and n indices.

The expression for the current is then:
: z

ieX 1

L= drTr R ) fu(t) GR@; ) GA(L; ) +GS( ) 1 (8.2.21)
1

Eq.(8.2.21) is the so-called Meir-Wingreen formula [82]. An alternativeform follows if one
computes the symmetrized total current as:

I e X 41
| = %:% 1 diTr S L) R HfR() GR(L ) G ) +
+ Loy R@ )y G ) (8.2.22)

By looking at Egs. (8.2.21) and (8.2.22) one observes that the Greémfunctions are 'local’, that
is they belong to the central system only (the trace is nothing but matrix multiplication), while
the leads are present through the coupling coe cients and the Femi functions. In order to
use the IMW formula one needs to calculate theG<RA . This step can be achieved using the
perturbation theory for non-equilibrium Green's functions.

By comparing the GME method and the non-equilibrium Green's function formalism (NEGF)
for transport processes one can easily convince himself that botapproaches rely on the parti-
tioning approach and allow for many-body interaction in the central system, while the leads are
assumed to be non-interacting (this assumption leads in particular b the Fermi distribution of
the particle reservoirs). There is however a crucial di erence beween the two methods. The
perturbative expansion of the dissipative kernel forces restrict the master equation approach to
weak lead-sample tunnelings while the interaction e ects are accoued for exactly. In contrast,
the Keldysh formalism is not limited to small system-reservoir coupling but the Coulomb ef-
fects have to be calculated from appropriate interaction self-engyies. Which method ts better
is simply decided by the particular problem at hand.

9 Recovering the Landauer formula in the non-interacting
case

The simplest application of the non-equilibrium Green's function formaism to quantum trans-
port corresponds to a non-interacting central systemS described by the Hamiltonian:

X
Hs = ndody o (9.2

n;
where n counts the single-particle states. The idea is to use the Jauho-Meiwingreen formula
(see Eg.(8.2.21)) and the Dyson and Keldysh equations for the rerded and lesser Green's
function. In this case the only perturbation applied on the system isthe coupling to the leads,
namely the transfer Hamiltonian Ht. Accordingly, the Dyson equation for the contour-ordered
Green's function of the central sample reads:

X
Gum(!; )= G (s )+ Gt ) woll; )Giom (!5 ) (9.2)

S

where G° is the Green's function in the absence of the coupling term and is the contour-
ordered self-energy of the two leads; R, de ned as:

1 X
(s )= S Vihr Gp (15 Wiy o (9.3)
k; =LR
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Let us consider rst the Dyson equation for the retarded comporent:
GR = G+ G™ RGR: (9.4)

After appropiate left and right multiplications this leads to:

GR '= GR ‘i R (9.5)

One can show thatG°R is diagonal, that is:

1 .
GR =1 2+i0" g (9.6)
A similar equation can be written down for the advanced Green's funtion. Then:

GA '+ Az GR M4 R (9.7)

Multiplying on the right with G” and on the left with GR we get:
GR Ght=GR R A GA: (9.8)

Note that the dierence GR  GA is the rst term one needs to compute in the JIMW formula.
Also, the dierence R A can be easily calculated, since:

. 1 X .
~ o= - Ve GRA Vicy o ; (9.9)
K;
Then
R A 1 X O;R 0;A
-~ o = = Vk i G™ G™ Vk 0 = (910)
K;
1 X h ‘ i
= = 2i ! - Vk | Vk o0 = i L + R "0:(9.11)
k
Therefore, from Eq. (9.8) we have:
GR G*= LiGR L+ R G (9.12)

Now we turn to the lesser GF of the central system which obeys th&eldysh equation
G = 1+G® R g™ 1+ AGh +GR <M (9.13)
where the non-interacting GF is calculated as:

Gom =21 (1) ! L o (9.14)

Plugging 1+ AGA = G% 'GA into Eq. (9.13) we obtain:

h 1
G = 1+G* ® G G

i
GM + GR <G*: (9.15)
On the other hand:
h N
GO G%A nm=2if Lty = 2y =0 (9.16)
Thus the Keldysh eq. (9.15) aquires a simpler form:
G* = GR <G*: (9.17)
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Finally for the lesser self-energy we obtain:

< _ 1 X 0< —
o = = VMg G Vg oo =
k
_2i X K _ | L R
- 7 Vk | f (') ' T Vk 1 0 = : f|_ +fR 1o (918)
k
from which we have:
G = 1GR f “+fg R G (9.19)
By using Egs. (9.12) and (9.19) into the JMW formula for the left current we obtain:
e Z1
L= — dT ()L (h); (9.20)
- 1
where we introduced the transmission matrix:
X
T(')= Tr LtGR RGA (9.21)
The total current | = I Ir therefore reads:
e Z1
I = 72 AT () (fet) fr(M)); (9.22)

which is nothing but the Landauer formula.

10 Coulomb Blockade

In this section the Coulomb blockade is described using the Meir-Wingeen formula derived
above. We start with the so called Anderson Hamiltonian which decribs the isolated system
(i.e not connected to particle reservoirs):

X
Hg = d¥d + Unwng; (10.0.1)

where is the energy of the spin-degenerate level of the system and is the strength of the
Coulomb interaction which corresponds to the double-occupancy fothe system (namely two
electrons with opposite spins occupy the same single-particle level).Note that the double
occupancy is allowed only for a second electron but with reverse spidue to the Pauli exclusion
principle. In this case energy of the system is 2+ U, namely it is pushed upwards by the
Coulomb interaction. Let us stress that the Anderson model is thesimplest one-level model,
being also called SIAM (single impurity Anderson model). We set~ = 1 (nhatural system of
units) throughout. The retarded Green function for this system is de ned as:

GYR ()= i (Y)hfd (t);d (0)gi; (10.0.2)

and gives the probability of observing a particle at a later time t, knowing that initially in was

inserted in the system at timet = 0. The 'retarded’' character of the function is included in the
step function. The role of the additional upper index of G%R will become clear slightly below.
As a preliminary step let us furst calculate this Green function. We casider its time derivative:

GR(t)= i (thfd (t);d()gi i (t)hfd(t);d¥ (0)gi: (10.0.3)
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Therefore:

GIR(t)y= i (t)hfd (0);d¥ (0)gi i (t)hf[H;d ];d (0)gi (10.0.4)
and:
GIR(t)y= i () i (t)hfd(t);d (0)gi: (10.0.5)
Next we nd that:
[d;nng=d n (10.0.6)

where ~ is the opposite of the spin , thatis n—=n . We used the commutation rules from
eq. (??).

After using the Heisenberg equation of motion for the operatord(t) we obtain:
d= i( +Un(t)d: (10.0.7)

Next, we de ne the following retarded correlation function:

R= " (t)hfn—(t)d (t);d (0)gi: (10.0.8)
Its derivative w.r.t time is:
iR= m-i+( +U) R@): (10.0.9)
Therefore:
iR = M+ GIR@E)+ U R): (10.0.10)
After Fourier transforming the last two equations we obtain:
! u+iot Ry = m-i;
I +i0" GJR(1) = 1+ U R(): (10.0.11)

Solving this system, the retarded Green function for the isolated gstem reads:

1 hn-i N i _
+i0t ! (+U)+ 0"

OR (| y —
Gy (1)= ! (10.0.12)
It is interesting to observe that the spin-dependent Green funcion depends also on the occu-
pation of the opposite spin state. In particular, if n— =0 we recover the usual non-interacting
single-particle GF. The following relations can also be obtained:

ImGY® = ImGY{*;
ReG}® = ReGJ*;
G* G = 2imGSR: (10.0.13)

Now we go back to the IMW formula according to which the steady-sate current through
the system is:

z
_ex %1 T RO
| = ) d[fo() fr(ITr T+ =)

On the other hand, the Dyson equation for the contour-orderedGreen function of the open
system reads:

ImGR(1) : (10.0.14)

Gg (1)=Gg (1)+G3 (1) (1)Ga (1) (10.0.15)

where G§ (!) is now viewed as the 'unperturbed' Green function (in the sense tht it does not
contain contributions from the contacts to the leads). Since the eect of the Coulomb inter-
action is taken into account exactly in G§ (! ) the proper self energy can be expressed only in
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terms of the Green function of the leadG? (! ):

X
()= VPG () (10.0.16)
k
Using the Langreth rule we obtain:
G} (1)= __t . (10.0.17)
d . GgR 1 R (! ). U
Now, by introducing the expression of GS® one nds after straightforward manipulations:
! U+ m-iu
G} (1) = —; 10.0.18
d () o u) R U+ m-iv) ( )
where the average number of particles depends on the lesser Grekinction:
z .
m-i = hdd-i = 2—'G§7(! ): (10.0.19)

Now, the lesser GF is obtained via the Keldysh equation which assumes simpler form:
Gi-(1)= G§(1) =(1)Gg-(); (10.0.20)
where we take advantage of the simple expression of the lesser seffergy of the leads:

X | |
M= PGS () gE)=210 () (¢ k) (10.0.21)
k

This nally leads to X
SMy=i f () (10.0.22)

Note that the lesser self-energy depends on the chemical potaats of both leads, otherwise
stated it depends on the biaseV = | r. To sum up, Egs. (10.0.18) and (10.0.19) must be
solved self-consistently and this yields the dependenddg V) (more technical details can be found
in Ref. [85]). More precisely, the steady-state current displays tw steps at speci ¢ values ofV.
Each step corresponds to the addition of one electron to the sysmm, the tunneling processes
requiring some extra energy. The tunneling of the second electrorequires suplimentary energy
due to the so called Coulomb blockade. Note that the current is by nomeans proportional to
the voltage as would be predicted by the Ohm's law. This is due to the gantum e ects which
are dominant here.

11 Appendix A: The Lang-Firsov transformation

In this appendix we derive the form of the Franck-Condon factors(see eq. 6.2.12). Using the
completeness relation we have:
z 1
mn = tmje (@ @)jnj = dxtmijxihxje @ @)jni; (11.1)
1

with hxjmi being the position representation of the eigenfunction of the quatum harmonic
oscillator:

hxjmi

m (X); (11.2)
where we used the notation:
0= — (11.3)



and:

()= Cne ~* Hm(X): (11.4)
|
|
= o (11.5)
1 r
Cn = p— p=: (11.6)
2"n!

A Taylor expansion of a function is:

@ @ @ i 0
(X + 0) = (X) + O@)("‘ 7@ + e- p (X): (117)
Therefore, if: oo
e’@a )= g—2tp (11.8)
we get:
|
Z P35 Za 0 0
mn = dx ,(X) n x+ = dx m X —p—z n X+ = ; (11.9)
1 1
Z1 0 0 2 X _po_i ’ P _po_i ’
mn = CmCn dxH, X p—z Hy, x + p—i e 2 e 2 ; (11.10)
1
02 z 1 0 0 2,2
mn = CmChe = . dxH, X p—z H, x + 19—E e *; (11.11)
where we changed the integration variablex ! .
Z, 0 0
mn = Cane - . dyHn, vy p—z Hy y+ p—z eV (11.12)

Next we use the following property of the translated Hermite polynamials:

n!

Ho(y+ @) = ———(2a)" PHy(y): (11.13)
oo (M PP
Then we have:
CmCh e XX n! Psnvr m! P=m p°
mn = e - 2 — 2 lppo;  (11.14)
’ 0| ’
p=0 po=o (N P)IP! (m p)p?
where, using the orthogonality relation of the Hermite polynomials:
oo = dye Y Hp(y)Hpo(y) = = 2°p! pipo (11.15)
we get:
_ p_Cane %‘Ew ( p n'm! ( 0)m+n b p02m+n2p p? .
e 0-0 g0 (n pi(m p'p? PP
(11.16)
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p —Cm Cn @ mian;m )
= —e

n'm!
. =z m p m+n 2p.
- @ < 1)P
mo = nimiC 1)e (O™ , (n pgl(m) ol 0 (11.18)
p:
Next we change the discrete variables such thap=m k if m = N«:
X ( 1)p ( 0) 2p — x ( 1)m K ( 0) 2m+2k — (11 19)
oo (M PI(m  p)p! eem (M M+ KM K)! '
(pmey : C o (9% = (11.20)
oo (M KN m+ Kkl '
(ymey X (_1)n! ®ko (121)
n! o (M KN m=+ Kk B ‘
m 2m
comen ™ r(ﬂo) Lh™ ® (1122
where the generalized Laguerre polynomials are:
X (n + k)!
K(y) = p - p.
Lr(x) p:0( 1) G p)!p!x’ (11.23)
- m 2m
mn = nim!l( 1)"e %.2( °)m+”( ) r(1|0) L, ™ @ (11.24)
-
(023
nn = %e - @ mnmo@. (11.25)
S
— N<! — M mpyn m @
min = N>'e z L : (11.26)
For m > n we use the change of variablep= n k and we have:
p__ @ X ( 1P
n = nlml( )Me = N 02 = 11.27
" (Y o DIm P 20
r
I
= T(yrrew mompn @ (11.28)
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